Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Intervalo de ano de publicação
1.
Immunity ; 54(10): 2385-2398.e10, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508662

RESUMO

Potent neutralizing SARS-CoV-2 antibodies often target the spike protein receptor-binding site (RBS), but the variability of RBS epitopes hampers broad neutralization of multiple sarbecoviruses and drifted viruses. Here, using humanized mice, we identified an RBS antibody with a germline VH gene that potently neutralized SARS-related coronaviruses, including SARS-CoV and SARS-CoV-2 variants. X-ray crystallography revealed coordinated recognition by the heavy chain of non-RBS conserved sites and the light chain of RBS with a binding angle mimicking the angiotensin-converting enzyme 2 (ACE2) receptor. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, which was enhanced by immunoglobulin G3 (IgG3) class switching. The coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Low-dose therapeutic antibody treatment in hamsters reduced the virus titers and morbidity during SARS-CoV-2 challenge. The structural basis for broad neutralizing activity may inform the design of a broad spectrum of therapeutics and vaccines.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Reações Cruzadas/imunologia , SARS-CoV-2/imunologia , Animais , Betacoronavirus/imunologia , Sítios de Ligação de Anticorpos , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/uso terapêutico , COVID-19/prevenção & controle , COVID-19/terapia , COVID-19/virologia , Cricetinae , Humanos , Switching de Imunoglobulina , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/imunologia , Camundongos , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Biochemistry (Mosc) ; 89(5): 862-871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880647

RESUMO

Antigenic cartography is a tool for interpreting and visualizing antigenic differences between virus variants based on virus neutralization data. This approach has been successfully used in the selection of influenza vaccine seed strains. With the emergence of SARS-CoV-2 variants escaping vaccine-induced antibody response, adjusting COVID-19 vaccines has become essential. This review provides information on the antigenic differences between SARS-CoV-2 variants revealed by antigenic cartography and explores a potential of antigenic cartography-based methods (e.g., building antibody landscapes and neutralization breadth gain plots) for the quantitative assessment of the breadth of the antibody response. Understanding the antigenic differences of SARS-CoV-2 and the possibilities of the formed humoral immunity aids in the prompt modification of preventative vaccines against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Antígenos Virais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Neutralizantes/imunologia
3.
J Virol ; 96(17): e0011822, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35972290

RESUMO

SARS-CoV-2 has mutated frequently since its first emergence in 2019. Numerous variants, including the currently emerging Omicron variant, have demonstrated high transmissibility or increased disease severity, posing serious threats to global public health. This study describes the identification of an immunodominant non-neutralizing epitope on SARS-CoV-2 receptor-binding domain (RBD). A subunit vaccine against this mutant RBD, constructed by masking this epitope with a glycan probe, did not significantly affect RBD's receptor-binding affinity or antibody-binding affinity, or its ability to induce antibody production. However, this vaccine enhanced the neutralizing activity of this RBD and its protective efficacy in immunized mice. Specifically, this vaccine elicited significantly higher-titer neutralizing antibodies than the prototypic RBD protein against Alpha (B.1.1.7 lineage), Beta (B.1.351 lineage), Gamma (P.1 lineage), and Epsilon (B.1.427 or B.1.429 lineage) variant pseudoviruses containing single or combined mutations in the spike (S) protein, albeit the neutralizing antibody titers against some variants were slightly lower than against original SARS-CoV-2. This vaccine also significantly improved the neutralizing activity of the prototypic RBD against pseudotyped and authentic Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants, although the neutralizing antibody titers were lower than against original SARS-CoV-2. In contrast to the prototypic RBD, the mutant RBD completely protected human ACE2 (hACE2)-transgenic mice from lethal challenge with a prototype SARS-CoV-2 strain and a Delta variant without weight loss. Overall, these findings indicate that this RBD vaccine has broad-spectrum activity against multiple SARS-CoV-2 variants, as well as the potential to be effective and have improved efficacy against Omicron and other pandemic variants. IMPORTANCE Several SARS-CoV-2 variants have shown increased transmissibility, calling for a need to develop effective vaccines with broadly neutralizing activity against multiple variants. This study identified a non-neutralizing epitope on the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, and further shielded it with a glycan probe. A subunit vaccine based on this mutant RBD significantly enhanced the ability of prototypic RBD against multiple SARS-CoV-2 variants, including the Delta and Omicron strains, although the neutralizing antibody titers against some of these variants were lower than those against original SARS-CoV-2. This mutant vaccine also enhanced the protective efficacy of the prototypic RBD vaccine against SARS-CoV-2 infection in immunized animals. In conclusion, this study identified an engineered RBD vaccine against Omicron and other SARS-CoV-2 variants that induced stronger neutralizing antibodies and protection than the original RBD vaccine. It also highlights the need to improve the effectiveness of current COVID-19 vaccines to prevent pandemic SARS-CoV-2 variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Epitopos , Glicosilação , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Vacinas de Subunidades Antigênicas/imunologia
4.
Toxicol Pathol ; 50(3): 294-307, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35514116

RESUMO

Coronavirus disease 2019 (COVID-19) has caused the ongoing COVID-19 pandemic and there is a growing demand for safe and effective vaccines. The thermophilic Thermothelomyces heterothallica filamentous fungal host, C1-cell, can be utilized as an expression platform for the rapid production of large quantities of antigens for developing vaccines. The aim of this study was to evaluate the local tolerance and the systemic toxicity of a C1-cell expressed receptor-binding domain (C1-RBD) vaccine, following repeated weekly intramuscular injections (total of 4 administrations), in New Zealand White rabbits. The animals were sacrificed either 3 days or 3 weeks following the last dose. No signs of toxicity were observed, including no injection site reactions. ELISA studies revealed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G antibodies in the sera of C1-RBD-treated animals starting from day 13 post injection, that were further elevated. Histopathology evaluation and immunohistochemical staining revealed follicular hyperplasia, consisting of B-cell type, in the spleen and inguinal lymph nodes of the treated animals that were sustained throughout the recovery phase. No local or systemic toxicity was observed. In conclusion, the SARS-CoV-2 C1-RBD vaccine candidate demonstrated an excellent safety profile and a lasting immunogenic response against receptor-binding domain, thus supporting its further development for use in humans.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Pandemias/prevenção & controle , Coelhos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144669

RESUMO

In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, genetic virus variants are still circulating among vaccinated individuals with different disease symptomatology. Understanding the protective- or disease-associated mechanisms in vaccinated individuals is relevant to advances in vaccine development and implementation. To address this objective, serum-protein profiles were characterized by quantitative proteomics and data-analysis algorithms in four cohorts of uninfected and SARS-CoV-2-infected vaccinated individuals with asymptomatic, non-severe, and severe disease symptomatology. The results show that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective- or disease-associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In non-severe cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins, including the spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.


Assuntos
COVID-19 , Hipersensibilidade , Vacinas Virais , Autoanticorpos , COVID-19/prevenção & controle , Epitopos , Humanos , Proteômica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
8.
Adv Healthc Mater ; 13(15): e2304575, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38436662

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has a significant impact on global health and the economy. It has underscored the urgent need for a stable, easily produced and effective vaccine. This study presents a novel approach using SARS-CoV-2 spike (S) protein-conjugated nanoparticles (NPs) in combination with cyclic GMP-AMP (cGAMP) (S-NPs-cGAMP) as a subunit vaccine. When mice are immunized, the antiserum of S-NPs-cGAMP group exhibits a 16-fold increase in neutralizing activity against a pseudovirus, compared to S protein group. Additionally, S-NPs-cGAMP induces even higher levels of neutralizing antibodies. Remarkably, the vaccine also triggers a robust humoral immune response, as evidenced by a notable elevation in virus-specific IgG and IgM antibodies. Furthermore, after 42 days of immunization, there is an observed increase in specific immune cell populations in the spleen. CD3+CD4+ and CD3+CD8+T lymphocytes, as well as B220+CD19+ and CD3-CD49b+ NK lymphocytes, show an upward trend, indicating a positive cellular immune response. Moreover, the S-NPs-cGAMP demonstrates promising results against the Delta strain and exhibits good cross-neutralization potential against other variants. These findings suggest that pDMDAAC NPs is potential adjuvant and could serve as a versatile platform for future vaccine development.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Nanopartículas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Animais , Nanopartículas/química , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/química , Vacinas contra COVID-19/farmacologia , Vacinas contra COVID-19/administração & dosagem , Camundongos , SARS-CoV-2/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , COVID-19/prevenção & controle , COVID-19/imunologia , Feminino , Anticorpos Neutralizantes/imunologia , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Humanos , Imunidade Humoral/efeitos dos fármacos , Adjuvantes de Vacinas/química , Adjuvantes de Vacinas/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Polímeros/química
9.
J Hazard Mater ; 430: 128414, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149493

RESUMO

Coronavirus disease 2019 (COVID-19) has become a worldwide public health emergency, and the high transmission of SARS-CoV-2 variants has raised serious concerns. Efficient disinfection methods are crucial for the prevention of viral transmission. Herein, pulse power-driven cold atmospheric plasma (CAP), a novel sterilization strategy, was found to potently inactivate SARS-CoV-2-like coronavirus GX_P2V, six strains of major epidemic SARS-CoV-2 variants and even swine coronavirus PEDV and SADS-CoV within 300 s (with inhibition rate more than 99%). We identified four dominant short-lived reactive species, ONOO-, 1O2, O2- and·OH, generated in response to CAP and distinguished their roles in the inactivation of GX_P2V and SARS-CoV-2 spike protein receptor binding domain (RBD), which is responsible for recognition and binding to human angiotensin-converting enzyme 2 (hACE2). Our study provides detailed evidence of a novel surface disinfection strategy for SARS-CoV-2 and other coronaviruses.


Assuntos
COVID-19 , Gases em Plasma , Animais , COVID-19/prevenção & controle , Desinfecção , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos
10.
Int J Biol Macromol ; 209(Pt A): 1359-1367, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469951

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has a significant burden on the economy and healthcare around the world. Vaccines are the most effective tools to fight infectious diseases by containing the spread of the disease. The current vaccines against SARS-CoV-2 are mostly based on the spike protein of SARS-CoV-2, which is large and has many immune-dominant non-neutralizing epitopes that may effectively skew the antibody response towards non-neutralizing antibodies. Here, we have explored the possibility of immune-focusing the receptor binding motif (RBM) of the spike protein of SARS-CoV-2 that induces mostly neutralizing antibodies in natural infection or in vacinees. The result shows that the scaffolded RBM can bind to Angiotensin Converting Enzyme 2 (ACE2) although with low affinity and induces a strong antibody response in mice. The immunized sera can bind both, the receptor binding domain (RBD) and the spike protein, which holds the RBM in its natural context. Sera from the immunized mice showed robust interferon γ response but poor neutralization of SARS-CoV-2 suggesting presence of a predominant T cell epitope on scaffolded RBM. Together, we provide a strategy for inducing strong antigenic T cell response which could be exploited further for future vaccine designing and development against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos , Humanos , Camundongos , Pandemias/prevenção & controle , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química
11.
J Mol Model ; 28(5): 128, 2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35461388

RESUMO

In COVID-19 infection, the SARS-CoV-2 spike protein S1 interacts to the ACE2 receptor of human host, instigating the viral infection. To examine the competitive inhibitor efficacy of broad spectrum alpha helical AMPs extracted from frog skin, a comparative study of intermolecular interactions between viral S1 and AMPs was performed relative to S1-ACE2p interactions. The ACE2 binding region with S1 was extracted as ACE2p from the complex for ease of computation. Surprisingly, the Spike-Dermaseptin-S9 complex had more intermolecular interactions than the other peptide complexes and importantly, the S1-ACE2p complex. We observed how atomic displacements in docked complexes impacted structural integrity of a receptor-binding domain in S1 through conformational sampling analysis. Notably, this geometry-based sampling approach confers the robust interactions that endure in S1-Dermaseptin-S9 complex, demonstrating its conformational transition. Additionally, QM calculations revealed that the global hardness to resist chemical perturbations was found more in Dermaseptin-S9 compared to ACE2p. Moreover, the conventional MD through PCA and the torsional angle analyses indicated that Dermaseptin-S9 altered the conformations of S1 considerably. Our analysis further revealed the high structural stability of S1-Dermaseptin-S9 complex and particularly, the trajectory analysis of the secondary structural elements established the alpha helical conformations to be retained in S1-Dermaseptin-S9 complex, as substantiated by SMD results. In conclusion, the functional dynamics proved to be significant for viral Spike S1 and Dermaseptin-S9 peptide when compared to ACE2p complex. Hence, Dermaseptin-S9 peptide inhibitor could be a strong candidate for therapeutic scaffold to prevent infection of SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Peptídeos Catiônicos Antimicrobianos , Tratamento Farmacológico da COVID-19 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Anuros/metabolismo , COVID-19/prevenção & controle , Humanos , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Science ; 377(6607): 728-735, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857439

RESUMO

The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19 , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Peptídeos/imunologia , Conformação Proteica em alfa-Hélice , Domínios Proteicos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
13.
Nat Commun ; 12(1): 5407, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518528

RESUMO

Most of the ongoing projects aimed at the development of specific therapies and vaccines against COVID-19 use the SARS-CoV-2 spike (S) protein as the main target. The binding of the spike protein with the ACE2 receptor (ACE2) of the host cell constitutes the first and key step for virus entry. During this process, the receptor binding domain (RBD) of the S protein plays an essential role, since it contains the receptor binding motif (RBM), responsible for the docking to the receptor. So far, mostly biochemical methods are being tested in order to prevent binding of the virus to ACE2. Here we show, with the help of atomistic simulations, that external electric fields of easily achievable and moderate strengths can dramatically destabilise the S protein, inducing long-lasting structural damage. One striking field-induced conformational change occurs at the level of the recognition loop L3 of the RBD where two parallel beta sheets, believed to be responsible for a high affinity to ACE2, undergo a change into an unstructured coil, which exhibits almost no binding possibilities to the ACE2 receptor. We also show that these severe structural changes upon electric-field application also occur in the mutant RBDs corresponding to the variants of concern (VOC) B.1.1.7 (UK), B.1.351 (South Africa) and P.1 (Brazil). Remarkably, while the structural flexibility of S allows the virus to improve its probability of entering the cell, it is also the origin of the surprising vulnerability of S upon application of electric fields of strengths at least two orders of magnitude smaller than those required for damaging most proteins. Our findings suggest the existence of a clean physical method to weaken the SARS-CoV-2 virus without further biochemical processing. Moreover, the effect could be used for infection prevention purposes and also to develop technologies for in-vitro structural manipulation of S. Since the method is largely unspecific, it can be suitable for application to other mutations in S, to other proteins of SARS-CoV-2 and in general to membrane proteins of other virus types.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Conformação Proteica em Folha beta , Receptores Virais/metabolismo , Internalização do Vírus/efeitos dos fármacos
14.
Curr Opin Virol ; 49: 127-138, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34130040

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has had a catastrophic impact on human health and the world economy. The response of the scientific community was unparalleled, and a combined global effort has resulted in the creation of vaccines in a shorter time frame than previously unimaginable. Reflecting this concerted effort, the structural analysis of the etiological agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed with an unprecedented pace. Since the onset of the pandemic, over 1000 high-resolution structures of a broad range of SARS-CoV-2 proteins have been solved and made publicly available. These structures have aided in the identification of numerous potential druggable targets and have contributed to the design of different vaccine candidates. This opinion article will discuss the impact of high-resolution structures in understanding SARS-CoV-2 biology and explore their role in the development of vaccines and antivirals.


Assuntos
COVID-19/prevenção & controle , SARS-CoV-2/química , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/epidemiologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/química , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Tratamento Farmacológico da COVID-19
15.
Cells ; 9(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105869

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the Coronavirus disease (COVID-19) pandemic, has so far resulted in more than 1.1 M deaths and 40 M cases worldwide with no confirmed remedy yet available. Since the first outbreak in Wuhan, China in December 2019, researchers across the globe have been in a race to develop therapies and vaccines against the disease. SARS-CoV-2, similar to other previously identified Coronaviridae family members, encodes several structural proteins, such as spike, envelope, membrane, and nucleocapsid, that are responsible for host penetration, binding, recycling, and pathogenesis. Structural biology has been a key player in understanding the viral infection mechanism and in developing intervention strategies against the new coronavirus. The spike glycoprotein has drawn considerable attention as a means to block viral entry owing to its interactions with the human angiotensin-converting enzyme 2 (ACE2), which acts as a receptor. Here, we review the current knowledge of SARS-CoV-2 and its interactions with ACE2 and antibodies. Structural information of SARS-CoV-2 spike glycoprotein and its complexes with ACE2 and antibodies can provide key input for the development of therapies and vaccines against the new coronavirus.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Humanos , Pandemias/prevenção & controle , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , Ligação Proteica , Domínios Proteicos/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Viruses ; 11(1)2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646569

RESUMO

Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is an infectious virus that was first reported in 2012. The MERS-CoV genome encodes four major structural proteins, among which the spike (S) protein has a key role in viral infection and pathogenesis. The receptor-binding domain (RBD) of the S protein contains a critical neutralizing domain and is an important target for development of MERS vaccines and therapeutics. In this review, we describe the relevant features of the MERS-CoV S-protein RBD, summarize recent advances in the development of MERS-CoV RBD-based vaccines and therapeutic antibodies, and illustrate potential challenges and strategies to further improve their efficacy.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Receptores Virais/química , Glicoproteína da Espícula de Coronavírus/química , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/uso terapêutico , Sítios de Ligação , Quirópteros/virologia , Infecções por Coronavirus/prevenção & controle , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA