Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132795

RESUMEN

Alternative oxidase (Aox) is a terminal oxidase operating in branched electron transport. The activity correlates positively with overflow metabolisms in certain Aspergilli, converting intracellular glucose by the shortest possible path into organic acids, like citrate or itaconate. Aox is nearly ubiquitous in fungi, but aox gene multiplicity is rare. Nevertheless, within the family of the Aspergillaceae and among its various species of industrial relevance-Aspergillus niger, A. oryzae, A. terreus, Penicillium rubens-paralogous aox genes coexist. Paralogous genes generally arise from duplication and are inherited vertically. Here, we provide evidence of four independent duplication events along the lineage that resulted in aox paralogues (aoxB) in contemporary Aspergillus and Penicillium taxa. In some species, three aox genes are co-expressed. The origin of the A. niger paralogue is different than that of the A. terreus paralogue, but all paralogous clades ultimately arise from ubiquitous aoxA parent genes. We found different patterns of uncorrelated gene losses reflected in the Aspergillus pedigree, albeit the original aoxA orthologues persist everywhere and are never replaced. The loss of acquired paralogues co-determines the contemporary aox gene content of individual species. In Aspergillus calidoustus, the two more ancient paralogues have, in effect, been replaced by two aoxB genes of distinct origins.

2.
J Fungi (Basel) ; 9(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37233281

RESUMEN

Alternative oxidase is a terminal oxidase in the branched mitochondrial electron transport chain of most fungi including Aspergillus niger (subgenus Circumdati, section Nigri). A second, paralogous aox gene (aoxB) is extant in some A. niger isolates but also present in two divergent species of the subgenus Nidulantes-A. calidoustus and A. implicatus-as well as in Penicillium swiecickii. Black aspergilli are cosmopolitan opportunistic fungi that can cause diverse mycoses and acute aspergillosis in immunocompromised individuals. Amongst the approximately 75 genome-sequenced A. niger strains, aoxB features considerable sequence variation. Five mutations were identified that rationally affect transcription or function or terminally modify the gene product. One mutant allele that occurs in CBS 513.88 and A. niger neotype strain CBS 554.65 involves a chromosomal deletion that removes exon 1 and intron 1 from aoxB. Another aoxB allele results from retrotransposon integration. Three other alleles result from point mutations: a missense mutation of the start codon, a frameshift, and a nonsense mutation. A. niger strain ATCC 1015 has a full-length aoxB gene. The A. niger sensu stricto complex can thus be subdivided into six taxa according to extant aoxB allele, which may facilitate rapid and accurate identification of individual species.

3.
J Fungi (Basel) ; 8(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35448628

RESUMEN

Introns are usually non-coding sequences interrupting open reading frames in pre-mRNAs [D1,2]. Stwintrons are nested spliceosomal introns, where an internal intron splits a second donor sequence into two consecutive splicing reactions leading to mature mRNA. In Hypoxylon sp. CO27-5, 36 highly sequence-similar [D1,2] stwintrons are extant (sister stwintrons). An additional 81 [D1,2] sequence-unrelated stwintrons are described here. Most of them are located at conserved gene positions rooted deep in the Hypoxylaceae. Absence of exonic sequence bias at the exon-stwintron junctions and a very similar phase distribution were noted for both groups. The presence of an underlying sequence symmetry in all 117 stwintrons was striking. This symmetry, more pronounced near the termini of most of the full-length sister stwintrons, may lead to a secondary structure that brings into close proximity the most distal splice sites, the donor of the internal and the acceptor of the external intron. The Hypoxylon stwintrons were overwhelmingly excised by consecutive splicing reactions precisely removing the whole intervening sequence, whereas one excision involving the distal splice sites led to a frameshift. Alternative (mis)splicing took place for both sister and uniquely occurring stwintrons. The extraordinary symmetry of the sister stwintrons thus seems dispensable for the infrequent, direct utilisation of the distal splice sites.

4.
J Fungi (Basel) ; 7(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34575748

RESUMEN

Spliceosomal introns are pervasive in eukaryotes. Intron gains and losses have occurred throughout evolution, but the origin of new introns is unclear. Stwintrons are complex intervening sequences where one of the sequence elements (5'-donor, lariat branch point element or 3'-acceptor) necessary for excision of a U2 intron (external intron) is itself interrupted by a second (internal) U2 intron. In Hypoxylaceae, a family of endophytic fungi, we uncovered scores of donor-disrupted stwintrons with striking sequence similarity among themselves and also with canonical introns. Intron-exon structure comparisons suggest that these stwintrons have proliferated within diverging taxa but also give rise to proliferating canonical introns in some genomes. The proliferated (stw)introns have integrated seamlessly at novel gene positions. The recently proliferated (stw)introns appear to originate from a conserved ancestral stwintron characterised by terminal inverted repeats (45-55 nucleotides), a highly symmetrical structure that may allow the formation of a double-stranded intron RNA molecule. No short tandem duplications flank the putatively inserted intervening sequences, which excludes a DNA transposition-based mechanism of proliferation. It is tempting to suggest that this highly symmetrical structure may have a role in intron proliferation by (an)other mechanism(s).

5.
Sci Rep ; 10(1): 6022, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265493

RESUMEN

In primary transcripts of eukaryotic nuclear genes, coding sequences are often interrupted by U2-type introns. Such intervening sequences can constitute complex introns excised by consecutive splicing reactions. The origin of spliceosomal introns is a vexing problem. Sequence variation existent across fungal taxa provides means to study their structure and evolution. In one class of complex introns called [D] stwintrons, an (internal) U2 intron is nested within the 5'-donor element of another (external) U2 intron. In the gene for a reticulon-like protein in species of the ascomycete yeast genus Lipomyces, the most 5' terminal intron position is occupied by one of three complex intervening sequences consistent of differently nested U2 intron units, as demonstrated in L. lipofer, L. suomiensis, and L. starkeyi. In L. starkeyi, the donor elements of the constituent introns are abutting and the complex intervening sequence can be excised alternatively either with one standard splicing reaction or, as a [D] stwintron, by two consecutive reactions. Our work suggests how [D] stwintrons could emerge by the appearance of new functional splice sites within an extant intron. The stepwise stwintronisation mechanism may involve duplication of the functional intron donor element of the ancestor intron.


Asunto(s)
Intrones , Lipomyces/genética , Evolución Molecular , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos
6.
Sci Rep ; 9(1): 9940, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289343

RESUMEN

Spliceosomal twin introns (stwintrons) are introns where any of the three consensus sequences involved in splicing is interrupted by another intron (internal intron). In Aspergillus nidulans, a donor-disrupted stwintron (intron-1) is extant in the transcript encoding a reticulon-like protein. The orthologous transcript of Aspergillus niger can be alternatively spliced; the exon downstream the stwintron could be skipped by excising a sequence that comprises this stwintron, the neighbouring intron-2, and the exon bounded by these. This process involves the use of alternative 3' splice sites for the internal intron, the resulting alternative intervening sequence being a longer 3'-extended stwintron. In 29 species of Onygenales, a multi-step splicing process occurs in the orthologous transcript, in which a complex intervening sequence including the stwintron and neigbouring intron-2, generates by three splicing reactions a "second order intron" which must then be excised with a fourth splicing event. The gene model in two species can be envisaged as one canonical intron (intron-1) evolved from this complex intervening sequence of nested canonical introns found elsewhere in Onygenales. Postulated splicing intermediates were experimentally verified in one or more species. This work illustrates a role of stwintrons in both alternative splicing and the evolution of intron structure.


Asunto(s)
Empalme Alternativo , Aspergillus niger/genética , Evolución Molecular , Exones , Intrones , Empalmosomas/genética , Aspergillus niger/crecimiento & desarrollo
7.
Appl Microbiol Biotechnol ; 102(20): 8799-8808, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30141084

RESUMEN

Itaconic acid is a five-carbon dicarboxylic acid with an unsaturated alkene bond, frequently used as a building block for the industrial production of a variety of synthetic polymers. It is also one of the major products of fungal "overflow metabolism" which can be produced in submerged fermentations of the filamentous fungus Aspergillus terreus. At the present, molar yields of itaconate are lower than those obtained in citric acid production in Aspergillus niger. Here, we have studied the possibility that the yield may be limited by the oxygen supply during fermentation and hence tested the effect of the dissolved oxygen concentration on the itaconic acid formation rate and yield in lab-scale bioreactors. The data show that a dissolved oxygen concentration of 2% saturation was sufficient for maximal biomass formation. Raising it to 30% saturation had no effect on biomass formation or the growth rate, but the itaconate yield augmented substantially from 0.53 to 0.85 mol itaconate/mol glucose. Furthermore, the volumetric and specific rates of itaconic acid formation ameliorated by as much as 150% concurrent with faster glucose consumption, shortening the fermentation time by 48 h. Further increasing the dissolved oxygen concentration over 30% saturation had no effect. Moreover, we show that this increase in itaconic acid production coincides with an increase in alternative respiration, circumventing the formation of surplus ATP by the cytochrome electron transport chain, as well as with increased levels of alternative oxidase transcript. We conclude that high(er) itaconic acid accumulation requires a dissolved oxygen concentration that is much higher than that needed for maximal biomass formation, and postulate that the induction of alternative respiration allows the necessary NADH reoxidation ratio without surplus ATP production to increase the glucose consumption and the flux through overflow metabolism.


Asunto(s)
Aspergillus niger/enzimología , Aspergillus niger/metabolismo , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Succinatos/metabolismo , Adenosina Trifosfato/metabolismo , Aspergillus niger/genética , Aspergillus niger/crecimiento & desarrollo , Biomasa , Reactores Biológicos/microbiología , Ácido Cítrico/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Mitocondriales/genética , Oxidorreductasas/genética , Oxígeno/análisis , Proteínas de Plantas/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-29046814

RESUMEN

BACKGROUND: In the primary transcript of nuclear genes, coding sequences-exons-usually alternate with non-coding sequences-introns. In the evolution of spliceosomal intron-exon structure, extant intron positions can be abandoned and new intron positions can be occupied. Spliceosomal twin introns ("stwintrons") are unconventional intervening sequences where a standard "internal" intron interrupts a canonical splicing motif of a second, "external" intron. The availability of genome sequences of more than a thousand species of fungi provides a unique opportunity to study spliceosomal intron evolution throughout a whole kingdom by means of molecular phylogenetics. RESULTS: A new stwintron was encountered in Aspergillus nidulans and Aspergillus niger. It is present across three classes of Leotiomyceta in the transcript of a well-conserved gene encoding a putative lipase (lipS). It occupies the same position as a standard intron in the orthologue gene in species of the early divergent classes of the Pezizomycetes and the Orbiliomycetes, suggesting that an internal intron has appeared within a pre-extant intron. On the other hand, the stwintron has been lost from certain taxa in Leotiomycetes and Eurotiomycetes at several occasions, most likely by a mechanism involving reverse transcription and homologous recombination. Another ancient stwintron present across whole Pezizomycotina orders-in the transcript of the bifunctional biotin biosynthesis gene bioDA-occurs at the same position as a standard intron in many species of non-Dikarya. Nevertheless, also the bioDA stwintron has disappeared from certain lineages within the taxa where it occurs, i.e., Sordariomycetes and Botryosphaeriales. Intriguingly, only the internal intron was lost from the Sordariomycetes bioDA stwintron at all but one occasion, leaving a standard intron in the same position, while where the putative lipase stwintron was lost, no intronic sequences remain. CONCLUSIONS: Molecular phylogeny of the peptide product was used to monitor the existence and fate of a stwintron in the transcripts of two neatly defined fungal genes, encoding well conserved proteins. Both defining events-stwintron emergence and loss-can be explained with extant models for intron insertion and loss. We thus demonstrate that stwintrons can serve as model systems to study spliceosomal intron evolution.

9.
Nucleic Acids Res ; 45(15): 9085-9092, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28595329

RESUMEN

Spliceosomal introns can occupy nearby rather than identical positions in orthologous genes (intron sliding or shifting). Stwintrons are complex intervening sequences, where an 'internal' intron interrupts one of the sequences essential for splicing, generating after its excision, a newly formed canonical intron defined as 'external'. In one experimentally demonstrated configuration, two alternatively excised internal introns, overlapping by one G, disrupt respectively the donor and the acceptor sequence of an external intron, leading to mRNAs encoding identical proteins. In a gene encoding a DHA1 antiporter in Pezizomycotina, we find a variety of predicted intron configurations interrupting the DNA stretch encoding a conserved peptidic sequence. Some sport a stwintron where the internal intron interrupts the donor of the external intron (experimentally confirmed for Aspergillus nidulans). In others, we found and demonstrate (for Trichoderma reesei) alternative, overlapping internal introns. Discordant canonical introns, one nt apart, are present in yet other species, exactly as predicted by the alternative loss of either of the internal introns at the DNA level from an alternatively spliced stwintron. An evolutionary pathway of 1 nt intron shift, involving an alternatively spliced stwintron intermediate is proposed on the basis of the experimental and genomic data presented.


Asunto(s)
Empalme Alternativo , Genoma Fúngico , Intrones , Nucleótidos/genética , Filogenia , ARN Mensajero/genética , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Aspergillus nidulans/clasificación , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Secuencia de Bases , Secuencia Conservada , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nucleótidos/metabolismo , ARN Mensajero/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Empalmosomas/genética , Empalmosomas/metabolismo , Trichoderma/clasificación , Trichoderma/genética , Trichoderma/metabolismo
10.
Fungal Genet Biol ; 85: 7-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26514742

RESUMEN

Spliceosomal twin introns, "stwintrons", have been defined as complex intervening sequences that carry a second intron ("internal intron") interrupting one of the conserved sequence domains necessary for their correct splicing via consecutive excision events. Previously, we have described and experimentally verified stwintrons in species of Sordariomycetes, where an "internal intron" interrupted the donor sequence of an "external intron". Here we describe and experimentally verify two novel stwintrons of the potato pathogen Helminthosporium solani. One instance involves alternative splicing of an internal intron interrupting the donor domain of an external intron and a second one interrupting the acceptor domain of an overlapping external intron, both events leading to identical mature mRNAs. In the second case, an internal intron interrupts the donor domain of the external intron, while an alternatively spliced intron leads to an mRNA carrying a premature chain termination codon. We thus extend the stwintron concept to the acceptor domain and establish a link of the occurrence of stwintrons with that of alternative splicing.


Asunto(s)
Empalme Alternativo , Helminthosporium/genética , Empalmosomas/genética , Secuencia Conservada , Intrones/genética , ARN Mensajero/genética
11.
Fungal Genet Biol ; 57: 48-57, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23792080

RESUMEN

The spliceosome is an RNA/protein complex, responsible for intron excision from eukaryotic nuclear transcripts. In bacteria, mitochondria and plastids, intron excision does not involve the spliceosome, but occurs through mechanisms dependent on intron RNA secondary and tertiary structure. For group II/III chloroplast introns, "twintrons" (introns within introns) have been described. The excision of the external intron, and thus proper RNA maturation, necessitates prior removal of the internal intron, which interrupts crucial sequences of the former. We have here predicted analogous instances of spliceosomal twintrons ("stwintrons") in filamentous fungi. In two specific cases, where the internal intron interrupts the donor of the external intron after the first or after the second nucleotide, respectively, we show that intermediates with the sequence predicted by the "stwintron" hypothesis, are produced in the splicing process. This implies that two successive rounds of RNA scanning by the spliceosome are necessary to produce the mature mRNA. The phylogenetic distributions of the stwintrons we have identified suggest that they derive from "late" events, subsequent to the appearance of the host intron. They may well not be limited to fungal nuclear transcripts, and their generation and eventual disappearance in the evolutionary process are relevant to hypotheses of intron origin and alternative splicing.


Asunto(s)
Conformación de Ácido Nucleico , Empalme del ARN/genética , ARN/genética , Empalmosomas/genética , Empalme Alternativo/genética , Cloroplastos/química , Cloroplastos/genética , Secuencia Conservada , Intrones , Filogenia , ARN/química , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...