Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 9(22): e15093, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34806317

RESUMEN

We have previously demonstrated that inhibition of extracellularly oriented carbonic anhydrase (CA) isoforms protects the myocardium against ischemia-reperfusion injury. In this study, our aim was to assess the possible further contribution of CA intracellular isoforms examining the actions of the highly diffusible cell membrane permeant inhibitor of CA, ethoxzolamide (ETZ). Isolated rat hearts, after 20 min of stabilization, were assigned to the following groups: (1) Nonischemic control: 90 min of perfusion; (2) Ischemic control: 30 min of global ischemia and 60 min of reperfusion (R); and (3) ETZ: ETZ at a concentration of 100 µM was administered for 10 min before the onset of ischemia and then during the first 10 min of reperfusion. In additional groups, ETZ was administered in the presence of SB202190 (SB, a p38MAPK inhibitor) or chelerythrine (Chel, a protein kinase C [PKC] inhibitor). Infarct size, myocardial function, and the expression of phosphorylated forms of p38MAPK, PKCε, HSP27, and Drp1, and calcineurin Aß content were assessed. In isolated mitochondria, the Ca2+ response, Ca2+ retention capacity, and membrane potential were measured. ETZ decreased infarct size by 60%, improved postischemic recovery of myocardial contractile and diastolic relaxation increased P-p38MAPK, P-PKCε, P-HSP27, and P-Drp1 expression, decreased calcineurin content, and normalized calcium and membrane potential parameters measured in isolated mitochondria. These effects were significantly attenuated when ETZ was administered in the presence of SB or Chel. These data show that ETZ protects the myocardium and mitochondria against ischemia-reperfusion injury through p38MAPK- and PKCε-dependent pathways and reinforces the role of CA as a possible target in the management of acute cardiac ischemic diseases.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Etoxzolamida/farmacología , Corazón/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/metabolismo , Animales , Benzofenantridinas/farmacología , Calcio/metabolismo , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Preparación de Corazón Aislado , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Daño por Reperfusión Miocárdica , Proteína Quinasa C/antagonistas & inhibidores , Piridinas/farmacología , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
2.
Sci Rep ; 11(1): 20885, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686736

RESUMEN

SLC4A11 is a H+/NH3/water transport protein, of corneal endothelial cells. SLC4A11 mutations cause congenital hereditary endothelial dystrophy and some cases of Fuchs endothelial corneal dystrophy. To probe SLC4A11's roles, we compared gene expression in RNA from corneas of 17-week-old slc4a11-/- (n = 3) and slc4a11+/+ mice (n = 3) and subjected to RNA sequencing. mRNA levels for a subset of genes were also assessed by quantitative real-time reverse transcription PCR (qRT RT-PCR). Cornea expressed 13,173 genes, which were rank-ordered for their abundance. In slc4a11-/- corneas, 100 genes had significantly altered expression. Abundant slc14a1 expression, encoding the urea transporter UT-A, suggests a significant role in the cornea. The set of genes with altered expression was subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, revealing that alterations clustered into extracellular region, cytoskeleton, cell adhesion and plasma membrane functions. Gene expression changes further clustered into classes (with decreasing numbers of genes): cell fate and development, extracellular matrix and cell adhesion, cytoskeleton, ion homeostasis and energy metabolism. Together these gene changes confirm earlier suggestions of a role of SLC4A11 in ion homeostasis, energy metabolism, cell adhesion, and reveal an unrecognized SLC4A11 role in cytoskeletal organization.


Asunto(s)
Proteínas de Transporte de Anión/genética , Córnea/fisiología , Expresión Génica/genética , Simportadores/genética , Animales , Adhesión Celular/genética , Membrana Celular/genética , Células Endoteliales/fisiología , Endotelio Corneal/fisiología , Células Epiteliales/fisiología , Matriz Extracelular/genética , Regulación de la Expresión Génica/genética , Transporte Iónico/genética , Masculino , Ratones , Mutación/genética
3.
J Mol Cell Cardiol ; 136: 53-63, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31518570

RESUMEN

Heart failure is the leading cause of death among diabetic people. Cellular and molecular entities leading to diabetic cardiomyopathy are, however, poorly understood. Coupling of cardiac carbonic anhydrase II (CAII) and Na+/H+ exchanger 1 (NHE1) to form a transport metabolon was analyzed in obese type 2 diabetic mice (ob-/-) and control heterozygous littermates (ob+/-). Echocardiography showed elevated systolic interventricular septum thickness and systolic posterior wall thickness in ob-/- mice at 9 and 16 weeks. ob-/- mice showed increased left ventricular (LV) weight/tibia length ratio and increased cardiomyocyte cross sectional area as compared to controls, indicating cardiac hypertrophy. Immunoblot analysis showed increased CAII expression in LV samples of ob-/-vs. ob+/- mice, and augmented Ser703 phosphorylation on NHE1 in ob-/- hearts. Reciprocal co-immunoprecipitation analysis showed strong association of CAII and NHE1 in LV samples of ob-/- mice. NHE1-dependent rate of intracellular pH (pHi) normalization after transient acid loading of isolated cardiomyocytes was higher in ob-/- mice vs. ob+/-. NHE transport activity was also augmented in cultured H9C2 rat cardiomyoblasts treated with high glucose/high palmitate, and it was normalized after CA inhibition. We conclude that the NHE1/CAII metabolon complex is exacerbated in diabetic cardiomyopathy of ob-/- mice, which may lead to perturbation of pHi and [Na+] and [Ca2+] handling in these diseased hearts.


Asunto(s)
Anhidrasa Carbónica II/metabolismo , Cardiomegalia/patología , Diabetes Mellitus Tipo 2/complicaciones , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Animales , Anhidrasa Carbónica II/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Electrocardiografía , Etoxzolamida/farmacología , Femenino , Ventrículos Cardíacos/patología , Concentración de Iones de Hidrógeno , Ratones Mutantes , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , Serina/metabolismo
4.
Exp Mol Pathol ; 105(3): 345-351, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30308197

RESUMEN

BACKGROUND: Recent studies from our laboratory show the cardioprotective action of benzolamide (BZ, carbonic anhydrase inhibitor) against ischemia-reperfusion injury. However, the mechanisms involved have not been fully elucidated. OBJECTIVE: To examine the participation of the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) in the effects of BZ in a model of regional ischemia. METHODS: Isolated rat hearts perfused by Langendorff technique were submitted to 40 min of coronary artery occlusion followed by 60 min of reperfusion (IC). Other hearts received BZ during the first 10 min of reperfusion in absence or presence of L-NAME, NOS inhibitor. The infarct size (IS) and the post-ischemic recovery of myocardial function were measured. Oxidative/nitrosative damage were assessed by reduced glutathione (GSH) content, thiobarbituric acid reactive substances (TBARS) and 3-nitrotyrosine levels. The expression of phosphorylated forms of Akt, p38MAPK and eNOS, and the concentration of inducible nitric oxide synthase (iNOS) were also determined. RESULTS: BZ significantly decreased IS (6.2 ±â€¯0.5% vs. 34 ±â€¯4%), improved post-ischemic contractility, preserved GSH levels and diminished TBARS and 3-nitrotyrosine. In IC hearts, P-Akt, P-p38MAPK and P-eNOS decreased and iNOS increased. After BZ addition the levels of P-kinases and P-eNOS increased and iNOS decreased. Except for P-Akt, P-p38MAPK and iNOS, the effects of BZ were abolished by L-NAME. CONCLUSIONS: Our data demonstrate that the treatment with BZ at the onset of reperfusion was effective to reduce cell death, contractile dysfunction and oxidative/nitrosative damage produced by coronary artery occlusion. These BZ-mediated beneficial actions appear mediated by eNOS/NO-dependent pathways.


Asunto(s)
Benzolamida/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animales , Preparación de Corazón Aislado , Masculino , Ratas , Ratas Wistar
5.
Basic Res Cardiol ; 113(3): 21, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29671120

RESUMEN

The authors have retracted this article [1] because of modifications in the control lanes of Figs. 2a and 8a of the COX1 blot obtained for 18-week-old rats (rotation, horizontal flipping and re-use of the control lanes for the 35-week-old rats blot). In light of the concerns raised, the conclusions drawn in this article cannot be relied upon.

7.
J Appl Physiol (1985) ; 125(2): 340-352, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357509

RESUMEN

During ischemia, increased anaerobic glycolysis results in intracellular acidosis. Activation of alkalinizing transport mechanisms associated with carbonic anhydrases (CAs) leads to myocardial intracellular Ca2+ increase. We characterize the effects of inhibition of CA with benzolamide (BZ) during cardiac ischemia-reperfusion (I/R). Langendorff-perfused isolated rat hearts were subjected to 30 min of global ischemia and 60 min of reperfusion. Other hearts were treated with BZ (5 µM) during the initial 10 min of reperfusion or perfused with acid solution (AR, pH 6.4) during the first 3 min of reperfusion. p38MAPK, a kinase linked to membrane transporters and involved in cardioprotection, was examined in hearts treated with BZ in presence of the p38MAPK inhibitor SB202190 (10 µM). Infarct size (IZ) and myocardial function were assessed, and phosphorylated forms of p38MAPK, Akt, and PKCε were evaluated by immunoblotting. We determined the rate of intracellular pH (pHi) normalization after transient acid loading in the absence and presence of BZ or BZ + SB202190 in heart papillary muscles (HPMs). Mitochondrial membrane potential (ΔΨm), Ca2+ retention capacity and Ca2+-mediated swelling after I/R were also measured. BZ, similarly to AR, reduced IZ, improved postischemic recovery of myocardial contractility, increased phosphorylation of Akt, PKCε, and p38MAPK, and normalized ΔΨm and Ca2+ homeostasis, effects abolished after p38MAPK inhibition. In HPMs, BZ slowed pHi recovery, an effect that was restored after p38MAPK inhibition. We conclude that prolongation of acidic conditions during reperfusion by BZ could be responsible for the cardioprotective benefits of reduced infarction and better myocontractile function, through p38MAPK-dependent pathways. NEW & NOTEWORTHY Carbonic anhydrase inhibition by benzolamide (BZ) maintains acidity, decreases infarct size, and improves postischemic myocardial dysfunction in ischemia-reperfusion (I/R) hearts. Protection afforded by BZ mimicked the beneficial effects elicited by an acidic solution (AR). Increased phosphorylation of p38MAPK occurs in I/R hearts reperfused with BZ or with AR. Mitochondria from I/R hearts possess abnormal Ca2+ handling and a more depolarized membrane potential compared with control hearts, and these changes were restored by treatment with BZ or AR.


Asunto(s)
Benzolamida/farmacología , Infarto del Miocardio/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Infarto del Miocardio/metabolismo , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Basic Res Cardiol ; 112(2): 14, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28120038

RESUMEN

NBC Na+/HCO3- cotransporter (NBCn1) and NHE1 Na+/H+ exchanger have been associated with cardiac disorders and recently located in coronary endothelial cells (CEC) and cardiomyocytes mitochondria, respectively. Mitochondrial NHE1 blockade delays permeability transition pore (MPTP) opening and reduces superoxide levels, two critical events exacerbated in cells of diseased hearts. Conversely, activation of NBCn1 prevented apoptosis in CEC subjected to ischemic stress. We characterized the role of the NHE1 and NBCn1 transporters in heart mitochondria from hypertrophic (SHR) and control (Wistar) rats. Expression of NHE1 was analyzed in left ventricular mitochondrial lysates (LVML), by immunoblots. NHE1 expression increased by ~40% in SHR compared to control (P < 0.05, n = 4). To examine NHE1-mediated Na+/H+ exchange activity in cardiac hypertrophy, mitochondria were loaded with BCECF-AM dye and the maximal rate of pHm change measured after the addition of 50 mM NaCl. SHR mitochondria had greater changes in pHm compared to Wistar, 0.10 ± 0.01 vs. 0.06 ± 0.01, respectively (P < 0.05, n = 5). In addition, mitochondrial suspensions from SHR and control myocardium were exposed to 200 µM CaCl2 to induce MPTP opening (light-scattering decrease, LSD) and swelling. Surprisingly, SHR rats showed smaller LSD and a reduction in mitochondrial swelling, 67 ± 10% (n = 15), compared to control, 100 ± 8% (n = 13). NBC inhibition with S0859 (1 µM) significantly increased swelling in both control 139 ± 10% (n = 8) and SHR 115 ± 10% (n = 4). Finally, NBCn1 Na+/HCO3- cotransporter increased by twofold its expression in SHR LVML, compared to normal (P < 0.05, n = 5). We conclude that increased NBCn1 activity may play a compensatory role in hypertrophic hearts, protecting mitochondria from Ca2+-induced MPTP opening and swelling.


Asunto(s)
Cardiomegalia/metabolismo , Mitocondrias/patología , Dilatación Mitocondrial , Simportadores de Sodio-Bicarbonato/metabolismo , Animales , Cardiomegalia/patología , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Immunoblotting , Inmunohistoquímica , Microscopía Confocal , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos , Ratas , Ratas Endogámicas SHR , Ratas Wistar
10.
Cardiovasc Pathol ; 25(6): 468-477, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27614168

RESUMEN

BACKGROUND: Two potent carbonic anhydrase (CA) inhibitors with widely differing membrane permeability, poorly diffusible benzolamide (BZ), and highly diffusible ethoxzolamide (ETZ) were assessed to determine whether they can reduce cardiac dysfunction in rats subjected to coronary artery ligation (CAL)-induced myocardial infarction. METHODS AND RESULTS: Rats with evidence of heart failure (HF) at 32 weeks following a permanent left anterior coronary artery occlusion were treated with placebo, BZ, or ETZ (4 mg kgday-1) for 4 weeks at which time left ventricular function and structure were evaluated. Lung weight/body weight (LW/BW) ratio increased in CAL rats by 17±1% vs. control, suggesting pulmonary edema. There was a trend for BZ and ETZ to ameliorate the increase in LW/BW by almost 50% (9±5% and 9±8%, respectively, versus CAL) (P=.16, NS). Echocardiographic assessment showed decreased left ventricular midwall shortening in HF rats, 21±1% vs. control 32±1%, which was improved by BZ to 29±1% and ETZ to 27±1%, and reduced endocardial shortening in HF rats 38±3% vs. control 62±1%, partially restored by BZ and ETZ to ~50%. Expression of the hypoxia-inducible membrane-associated CAIX isoform increased by ~60% in HF rat hearts, and this effect was blocked by ETZ. CONCLUSIONS: We conclude that CAL-induced myocardial interstitial fibrosis and associated decline in left ventricular function were diminished with BZ or ETZ treatment. The reductions in cardiac remodeling in HF with both ETZ and BZ CA inhibitors suggest that inhibition of a membrane-bound CA appears to be the critical site for this protection.


Asunto(s)
Benzolamida/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Etoxzolamida/farmacología , Corazón/efectos de los fármacos , Infarto del Miocardio/patología , Animales , Vasos Coronarios/cirugía , Modelos Animales de Enfermedad , Immunoblotting , Ligadura , Masculino , Ratas , Ratas Wistar , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
11.
BMC Cardiovasc Disord ; 14: 89, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25047106

RESUMEN

BACKGROUND: Cardiac hypertrophy is central to the etiology of heart failure. Understanding the molecular pathways promoting cardiac hypertrophy may identify new targets for therapeutic intervention. Sodium-proton exchanger (NHE1) activity and expression levels in the heart are elevated in many models of hypertrophy through protein kinase C (PKC)/MAPK/ERK/p90RSK pathway stimulation. Sustained NHE1 activity, however, requires an acid-loading pathway. Evidence suggests that the Cl-/HCO3- exchanger, AE3, provides this acid load. Here we explored the role of AE3 in the hypertrophic growth cascade of cardiomyocytes. METHODS: AE3-deficient (ae3-/-) mice were compared to wildtype (WT) littermates to examine the role of AE3 protein in the development of cardiomyocyte hypertrophy. Mouse hearts were assessed by echocardiography. As well, responses of cultured cardiomyocytes to hypertrophic stimuli were measured. pH regulation capacity of ae3-/- and WT cardiomyocytes was assessed in cultured cells loaded with the pH-sensitive dye, BCECF-AM. RESULTS: ae3-/- mice were indistinguishable from wild type (WT) mice in terms of cardiovascular performance. Stimulation of ae3-/- cardiomyocytes with hypertrophic agonists did not increase cardiac growth or reactivate the fetal gene program. ae3-/- mice are thus protected from pro-hypertrophic stimulation. Steady state intracellular pH (pHi) in ae3-/- cardiomyocytes was not significantly different from WT, but the rate of recovery of pHi from imposed alkalosis was significantly slower in ae3-/- cardiomyocytes. CONCLUSIONS: These data reveal the importance of AE3-mediated Cl-/HCO3- exchange in cardiovascular pH regulation and the development of cardiomyocyte hypertrophy. Pharmacological antagonism of AE3 is an attractive approach in the treatment of cardiac hypertrophy.


Asunto(s)
Antiportadores/deficiencia , Cardiomegalia/prevención & control , Miocitos Cardíacos/metabolismo , Animales , Antiportadores/genética , Presión Sanguínea , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Células Cultivadas , Regulación de la Expresión Génica , Genotipo , Concentración de Iones de Hidrógeno , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Fenotipo , Ultrasonografía
12.
Am J Physiol Renal Physiol ; 305(12): F1765-74, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24005470

RESUMEN

The NBCn1 Na(+)/HCO3(-) cotransporter catalyzes the electroneutral movement of 1 Na(+):1 HCO3(-) into kidney cells. We characterized the intracellular pH (pHi) regulation in human embryonic kidney cells (HEK) subjected to NH4Cl prepulse acid loading, and we examined the NBCn1 expression and function in HEK cells subjected to 24-h elevated Pco2 (10-15%). After acid loading, in the presence of HCO3(-), ∼50% of the pHi recovery phase was blocked by the Na(+)/H(+) exchanger inhibitors EIPA (10-50 µM) and amiloride (1 mM) and was fully cancelled by 30 µM EIPA under nominally HCO3(-)-free conditions. In addition, in the presence of HCO3(-), pHi recovery after acid loading was completely blocked when Na(+) was omitted in the buffer. pHi recovery after acidification in HEK cells was repeated in the presence of the NBC inhibitor S0859, and the pHi recovery was inhibited by S0859 in a dose-dependent manner (Ki = 30 µM, full inhibition at 60 µM), which confirmed NBC Na(+)/HCO3(-) cotransporter activation. NBCn1 expression increased threefold after 24-h exposure of cultured HEK cells to 10% CO2 and sevenfold after exposure to 15% CO2, examined by immunoblots. Finally, exposure of HEK cells to high CO2 significantly increased the HCO3(-)-dependent recovery of pHi after acid loading. We conclude that HEK cells expressed the NBCn1 Na(+)/HCO3(-) cotransporter as the only HCO3(-)-dependent mechanism responsible for cellular alkaline loading. NBCn1, which expresses in different kidney cell types, was upregulated by 24-h high-Pco2 exposure of HEK cells, and this upregulation was accompanied by increased NBCn1-mediated HCO3(-) transport.


Asunto(s)
Dióxido de Carbono/farmacología , Células HEK293/efectos de los fármacos , Células HEK293/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Amilorida/análogos & derivados , Amilorida/farmacología , Bicarbonatos/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293/citología , Humanos , Concentración de Iones de Hidrógeno , Factores de Tiempo
13.
Front Physiol ; 4: 152, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825461

RESUMEN

Mitochondrial damage has been associated with early steps of cardiac dysfunction in heart subjected to ischemic stress, oxidative stress and hypertrophy. A common feature for the mitochondrial deterioration is the loss of the mitochondrial membrane potential (ΔΨ m) with the concomitant irreversible opening of the mitochondrial permeability transition pore (MPTP) which follows the mitochondrial Ca(2+) overload, and the subsequent mitochondrial swelling. We have recently characterized the expression of the Na(+)/H(+) exchanger 1 (mNHE1) in mitochondrial membranes. This surprising observation provided a unique target for the prevention of the Ca(2+)-induced MPTP opening, based on the inhibition of the NHE1 m. In this line, inhibition of NHE1 m activity and/or reduction of NHE1 m expression decreased the Ca(2+)-induced mitochondrial swelling and the release of reactive oxygen species (ROS) in isolated cardiac mitochondria and preserved the ΔΨ m in isolated cardiomyocytes. Mitochondrial NHE1 thus represents a novel target to prevent cardiac disease, opening new avenues for future research.

14.
Am J Physiol Heart Circ Physiol ; 305(2): H228-37, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23709596

RESUMEN

Myocardial stretch is an established signal that leads to hypertrophy. Myocardial stretch induces a first immediate force increase followed by a slow force response (SFR), which is a consequence of an increased Ca(2+) transient that follows the NHE1 Na(+)/H(+) exchanger activation. Carbonic anhydrase II (CAII) binds to the extreme COOH terminus of NHE1 and regulates its transport activity. We aimed to test the role of CAII bound to NHE1 in the SFR. The SFR and changes in intracellular pH (pHi) were evaluated in rat papillary muscle bathed with CO2/HCO3(-) buffer and stretched from 92% to 98% of the muscle maximal force development length for 10 min in the presence of the CA inhibitor 6-ethoxzolamide (ETZ, 100 µM). SFR control was 120 ± 3% (n = 8) of the rapid initial phase and was fully blocked by ETZ (99 ± 4%, n = 6). The SFR corresponded to a maximal increase in pHi of 0.18 ± 0.02 pH units (n = 4), and pHi changes were blocked by ETZ (0.04 ± 0.04, n = 6), as monitored by epifluorescence. NHE1/CAII physical association was examined in the SFR by coimmunoprecipitation, using muscle lysates. CAII immunoprecipitated with an anti-NHE1 antibody and the CAII immunoprecipitated protein levels increased 58 ± 9% (n = 6) upon stretch of muscles, assessed by immunoblots. The p90(RSK) kinase inhibitor SL0101-1 (10 µM) blocked the SFR of heart muscles after stretch 102 ± 2% (n = 4) and reduced the binding of CAII to NHE1, suggesting that the stretch-induced phosphorylation of NHE1 increases its binding to CAII. CAII/NHE1 interaction constitutes a component of the SFR to heart muscle stretch, which potentiates NHE1-mediated H(+) transport in the myocardium.


Asunto(s)
Anhidrasa Carbónica II/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Etoxzolamida/farmacología , Husos Musculares/metabolismo , Músculos Papilares/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Anhidrasa Carbónica II/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Concentración de Iones de Hidrógeno , Inmunoprecipitación , Mediciones Luminiscentes , Masculino , Músculos Papilares/enzimología , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Intercambiador 1 de Sodio-Hidrógeno , Factores de Tiempo
15.
BMC Cardiovasc Disord ; 13: 2, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23297731

RESUMEN

BACKGROUND: Carbonic anhydrase enzymes (CA) catalyze the reversible hydration of carbon dioxide to bicarbonate in mammalian cells. Trans-membrane transport of CA-produced bicarbonate contributes significantly to cellular pH regulation. A body of evidence implicates pH-regulatory processes in the hypertrophic growth pathway characteristic of hearts as they fail. In particular, Na+/H+ exchange (NHE) activation is pro-hypertrophic and CA activity activates NHE. Recently Cardrase (6-ethoxyzolamide), a CA inhibitor, was found to prevent and revert agonist-stimulated cardiac hypertrophy (CH) in cultured cardiomyocytes. Our goal thus was to determine whether hypertrophied human hearts have altered expression of CA isoforms. METHODS: We measured CA expression in hypertrophied human hearts to begin to examine the role of carbonic anhydrase in progression of human heart failure. Ventricular biopsies were obtained from patients undergoing cardiac surgery (CS, n = 14), or heart transplantation (HT, n = 13). CS patients presented mild/moderate concentric left ventricular hypertrophy and normal right ventricles, with preserved ventricular function; ejection fractions were ~60%. Conversely, HT patients with failing hearts presented CH or ventricular dilation accompanied by ventricular dysfunction and EF values of 20%. Non-hypertrophic, non-dilated ventricular samples served as controls. RESULTS: Expression of atrial and brain natriuretic peptide (ANP and BNP) were markers of CH. Hypertrophic ventricles presented increased expression of CAII, CAIV, ANP, and BNP, mRNA levels, which increased in failing hearts, measured by quantitative real-time PCR. CAII, CAIV, and ANP protein expression also increased approximately two-fold in hypertrophic/dilated ventricles. CONCLUSIONS: These results, combined with in vitro data that CA inhibition prevents and reverts CH, suggest that increased carbonic anhydrase expression is a prognostic molecular marker of cardiac hypertrophy.


Asunto(s)
Anhidrasas Carbónicas/genética , Insuficiencia Cardíaca/genética , Hipertrofia Ventricular Izquierda/genética , Miocardio/enzimología , Anciano , Animales , Factor Natriurético Atrial/genética , Biopsia , Anhidrasa Carbónica II/genética , Anhidrasa Carbónica IV/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Marcadores Genéticos , Células HEK293 , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Isoenzimas , Masculino , Ratones , Persona de Mediana Edad , Miocardio/patología , Péptido Natriurético Encefálico/genética , ARN Mensajero/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Volumen Sistólico , Transfección , Función Ventricular Izquierda
16.
Am J Physiol Cell Physiol ; 303(1): C69-80, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22538240

RESUMEN

Na(+)/HCO(3)(-) cotransporter (NBC)e1 catalyze the electrogenic movement of 1 Na(+):2 HCO(3)(-) into cardiomyocytes cytosol. NBC proteins associate with carbonic anhydrases (CA), CAII, and CAIV, forming a HCO(3)(-) transport metabolon. Herein, we examined the physical/functional interaction of NBCe1 and transmembrane CAIX in cardiac muscle. NBCe1 and CAIX physical association was examined by coimmunoprecipitation, using rat ventricular lysates. NBCe1 coimmunoprecipitated with anti-CAIX antibody, indicating NBCe1 and CAIX interaction in the myocardium. Glutathione-S-transferase (GST) pull-down assays with predicted extracellular loops (EC) of NBCe1 revealed that NBCe1-EC4 mediated interaction with CAIX. Functional NBCe1/CAIX interaction was examined using fluorescence measurements of BCECF in rat cardiomyocytes to monitor cytosolic pH. NBCe1 transport activity was evaluated after membrane depolarization with high extracellular K(+) in the presence or absence of the CA inhibitors, benzolamide (BZ; 100 µM) or 6-ethoxyzolamide (ETZ; 100 µM) (*P < 0.05). This depolarization protocol produced an intracellular pH (pH(i)) increase of 0.17 ± 0.01 (n = 11), which was inhibited by BZ (0.11 ± 0.02; n = 7) or ETZ (0.06 ± 0.01; n = 6). NBCe1 activity was also measured by changes of pH(i) in NBCe1-transfected human embryonic kidney 293 cells subjected to acid loads. Cotransfection of CAIX with NBCe1 increased the rate of pH(i) recovery (in mM/min) by about fourfold (12.1 ± 0.8; n = 9) compared with cells expressing NBCe1 alone (3.1 ± 0.5; n = 7), which was inhibited by BZ (7.5 ± 0.3; n = 9). We demonstrated that CAIX forms a complex with EC4 of NBCe1, which activates NBCe1-mediated HCO(3)(-) influx in the myocardium. CAIX and NBCe1 have been linked to tumorigenesis and cardiac cell growth, respectively. Thus inhibition of CA activity might be useful to prevent activation of NBCe1 under these pathological conditions.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Miocardio/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Animales , Bicarbonatos/metabolismo , Transporte Biológico Activo , Anhidrasa Carbónica IX , Línea Celular , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratas , Simportadores de Sodio-Bicarbonato/química
17.
J Mol Cell Cardiol ; 52(3): 741-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22227327

RESUMEN

Two AE3 transcripts, full-length (AE3fl) and cardiac (AE3c) are expressed in the heart. AE3 catalyzes electroneutral Cl(-)/HCO(3)(-) exchange across cardiomyocyte sarcolemma. AE proteins associate with carbonic anhydrases (CA), including CAII and CAIV, forming a HCO(3)(-) transport metabolon (BTM), increasing HCO(3)(-) fluxes and regulating cardiomyocytes pH. CAXIV, which is also expressed in the heart's sarcolemma, is a transmembrane enzyme with an extracellular catalytic domain. Herein, AE3/CAXIV physical association was examined by coimmunoprecipitation using rodent heart lysates. CAXIV immunoprecipitated with anti-AE3 antibody and both AE3fl and AE3c were reciprocally immunoprecipitated using anti-CAXIV antibody, indicating AE3fl-AE3c/CAXIV interaction in the myocardium. Coimmunoprecipitation experiments on heart lysates from a mouse with targeted disruption of the ae3 gene, failed to pull down AE3 with the CAXIV antibody. Confocal images demonstrated colocalization of CAXIV and AE3 in mouse ventricular myocytes. Functional association of AE3fl and CAXIV was examined in isolated hypertrophic rat cardiomyocytes, using fluorescence measurements of BCECF to monitor cytosolic pH. Hypertrophic cardiomyocytes of spontaneously hypertensive rats (SHR) presented elevated myocardial AE-mediated Cl(-)/HCO(3)(-) exchange activity (J(HCO3-) mM.min(-1)) compared to normal (Wistar) rats (7.5±1.3, n=4 versus 2.9±0.1, n=6, respectively). AE3fl, AE3c, CAII, CAIV, and CAIX protein expressions were similar in SHR and Wistar rat hearts. However, immunoblots revealed a twofold increase of CAXIV protein expression in the SHR myocardium compared to normal hearts (n=11). Furthermore, the CA-inhibitor, benzolamide, neutralized the stimulatory effect of extracellular CA on AE3 transport activity (3.7±1.5, n=3), normalizing AE3-dependent HCO(3)(-) fluxes in SHR. CAXIV/AE3 interaction constitutes an extracellular component of a BTM which potentiates AE3-mediated HCO(3)(-) transport in the heart. Increased CAXIV expression and consequent AE3/CAXIV complex formation would render AE3 hyperactive in the SHR heart.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Cardiomegalia/enzimología , Miocardio/enzimología , Animales , Antiportadores/genética , Antiportadores/metabolismo , Anhidrasas Carbónicas/genética , Cardiomegalia/genética , Línea Celular , Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Unión Proteica , Ratas , Ratas Endogámicas SHR , Ratas Wistar
18.
J Appl Physiol (1985) ; 111(3): 874-80, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21659487

RESUMEN

Myocardial stretch induces a biphasic force response: a first abrupt increase followed by a slow force response (SFR), believed to be the in vitro manifestation of the Anrep effect. The SFR is due to an increase in Ca²âº transient of unclear mechanism. We proposed that Na⁺/H⁺ exchanger (NHE-1) activation is a key factor in determining the contractile response, but recent reports challenged our findings. We aimed to specifically test the role of the NHE-1 in the SFR. To this purpose small hairpin interference RNA capable of mediating specific NHE-1 knockdown was incorporated into a lentiviral vector (l-shNHE1) and injected into the left ventricular wall of Wistar rats. Injection of a lentiviral vector expressing a nonsilencing sequence (scramble) served as control. Myocardial NHE-1 protein expression and function (the latter evaluated by the recovery of pH(i) after an acidic load and the SFR) were evaluated. Animals transduced with l-shNHE1 showed reduced NHE-1 expression (45 ± 8% of controls; P < 0.05), and the presence of the lentivirus in the left ventricular myocardium, far from the site of injection, was evidenced by confocal microscopy. These findings correlated with depressed basal pH(i) recovery after acidosis [(max)dpH(i)/dt 0.055 ± 0.008 (scramble) vs. 0.009 ± 0.004 (l-shNHE1) pH units/min, P < 0.05], leftward shift of the relationship between J(H⁺) (H⁺ efflux corrected by the intrinsic buffer capacity), and abolishment of SFR (124 ± 2 vs. 101 ± 2% of rapid phase; P < 0.05) despite preserved ERK1/2 phosphorylation [247 ± 12 (stretch) and 263 ± 23 (stretch l-shNHE1) % of control; P < 0.05 vs. nonstretched control], well-known NHE-1 activators. Our results provide strong evidence to propose NHE-1 activation as key factor in determining the SFR to stretch.


Asunto(s)
Mecanorreceptores/metabolismo , Fuerza Muscular , Contracción Miocárdica , Músculos Papilares/metabolismo , Interferencia de ARN , Intercambiadores de Sodio-Hidrógeno/metabolismo , Acidosis/metabolismo , Acidosis/fisiopatología , Animales , Regulación hacia Abajo , Concentración de Iones de Hidrógeno , Inyecciones Intramusculares , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculos Papilares/fisiopatología , Fosforilación , ARN Interferente Pequeño/administración & dosificación , Ratas , Ratas Wistar , Transducción de Señal , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , Factores de Tiempo
19.
Br J Pharmacol ; 164(8): 1976-89, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21595652

RESUMEN

BACKGROUND AND PURPOSE: Na(+) /HCO(3) (-) co-transport (NBC) regulates intracellular pH (pH(i) ) in the heart. We have studied the electrogenic NBC isoform NBCe1 by examining the effect of functional antibodies to this protein. EXPERIMENTAL APPROACH: We generated two antibodies against putative extracellular loop domains 3 (a-L3) and 4 (a-L4) of NBCe1 which recognized NBCe1 on immunoblots and immunostaining experiments. pH(i) was monitored using epi-fluorescence measurements in cat ventricular myocytes. Transport activity of total NBC and of NBCe1 in isolation were evaluated after an ammonium ion-induced acidosis (expressed as H(+) flux, J(H) , in mmol·L(-1) min(-1) at pH(i) 6.8) and during membrane depolarization with high extracellular potassium (potassium pulse, expressed as ΔpH(i) ) respectively. KEY RESULTS: The potassium pulse produced a pH(i) increase of 0.18 ± 0.006 (n= 5), which was reduced by the a-L3 antibody (0.016 ± 0.019). The a-L-3 also decreased J(H) by 50%. Surprisingly, during the potassium pulse, a-L4 induced a higher pH(i) increase than control,(0.25 ± 0.018) whereas the recovery of pH(i) from acidosis was faster (J(H) was almost double the control value). In perforated-patch experiments, a-L3 prolonged and a-L4 shortened action potential duration, consistent with blockade and stimulation of NBCe1-carried anionic current respectively. CONCLUSIONS AND IMPLICATIONS: Both antibodies recognized NBCe1, but they had opposing effects on the function of this transporter, as the a-L3 was inhibitory and the a-L4 was excitatory. These antibodies could be valuable in studies on the pathophysiology of NBCe1 in cardiac tissue, opening a path for their potential clinical use.


Asunto(s)
Anticuerpos/inmunología , Simportadores de Sodio-Bicarbonato/inmunología , Animales , Gatos , Fluorescencia , Masculino , Microscopía Confocal , Miocardio/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Conejos
20.
Am J Physiol Heart Circ Physiol ; 300(4): H1237-51, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21297023

RESUMEN

Inhibition of Na(+)/H(+) exchanger 1 (NHE1) reduces cardiac ischemia-reperfusion (I/R) injury and also cardiac hypertrophy and failure. Although the mechanisms underlying these NHE1-mediated effects suggest delay of mitochondrial permeability transition pore (MPTP) opening, and reduction of mitochondrial-derived superoxide production, the possibility of NHE1 blockade targeting mitochondria has been incompletely explored. A short-hairpin RNA sequence mediating specific knock down of NHE1 expression was incorporated into a lentiviral vector (shRNA-NHE1) and transduced in the rat myocardium. NHE1 expression of mitochondrial lysates revealed that shRNA-NHE1 transductions reduced mitochondrial NHE1 (mNHE1) by ∼60%, supporting the expression of NHE1 in mitochondria membranes. Electron microscopy studies corroborate the presence of NHE1 in heart mitochondria. Immunostaining of rat cardiomyocytes also suggests colocalization of NHE1 with the mitochondrial marker cytochrome c oxidase. To examine the functional role of mNHE1, mitochondrial suspensions were exposed to increasing concentrations of CaCl(2) to induce MPTP opening and consequently mitochondrial swelling. shRNA-NHE1 transduction reduced CaCl(2)-induced mitochondrial swelling by 64 ± 4%. Whereas the NHE1 inhibitor HOE-642 (10 µM) decreased mitochondrial Ca(2+)-induced swelling in rats transduced with nonsilencing RNAi (37 ± 6%), no additional HOE-642 effects were detected in mitochondria from rats transduced with shRNA-NHE1. We have characterized the expression and function of NHE1 in rat heart mitochondria. Because mitochondria from rats injected with shRNA-NHE1 present a high threshold for MPTP formation, the beneficial effects of NHE1 inhibition in I/R resulting from mitochondrial targeting should be considered.


Asunto(s)
Mitocondrias Cardíacas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Antiarrítmicos/farmacología , Calcio/farmacología , Complejo IV de Transporte de Electrones/ultraestructura , Expresión Génica/efectos de los fármacos , Silenciador del Gen , Guanidinas/farmacología , Masculino , Mitocondrias Cardíacas/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/genética , Sulfonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA