Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1330-1345, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602103

RESUMEN

BACKGROUND: CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS: To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS: We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS: Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.


Asunto(s)
Proteína Similar al Receptor de Calcitonina , Enfermedad de la Arteria Coronaria , Células Endoteliales , Elementos de Facilitación Genéticos , Polimorfismo de Nucleótido Simple , Estrés Mecánico , Humanos , Células Endoteliales/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Mecanotransducción Celular , Células Cultivadas , Regulación de la Expresión Génica , Unión Proteica , Predisposición Genética a la Enfermedad , Sitios de Unión
2.
Am J Hum Genet ; 110(5): 722-740, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37060905

RESUMEN

Coronary artery disease (CAD) is a pandemic disease where up to half of the risk is explained by genetic factors. Advanced insights into the genetic basis of CAD require deeper understanding of the contributions of different cell types, molecular pathways, and genes to disease heritability. Here, we investigate the biological diversity of atherosclerosis-associated cell states and interrogate their contribution to the genetic risk of CAD by using single-cell and bulk RNA sequencing (RNA-seq) of mouse and human lesions. We identified 12 disease-associated cell states that we characterized further by gene set functional profiling, ligand-receptor prediction, and transcription factor inference. Importantly, Vcam1+ smooth muscle cell state genes contributed most to SNP-based heritability of CAD. In line with this, genetic variants near smooth muscle cell state genes and regulatory elements explained the largest fraction of CAD-risk variance between individuals. Using this information for variant prioritization, we derived a hybrid polygenic risk score (PRS) that demonstrated improved performance over a classical PRS. Our results provide insights into the biological mechanisms associated with CAD risk, which could make a promising contribution to precision medicine and tailored therapeutic interventions in the future.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Aterosclerosis/genética , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Factores de Riesgo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple/genética
3.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948388

RESUMEN

Methylation is an essential epigenetic modification mainly catalysed by S-Adenosyl methionine-dependent methyltransferases (MTases). Several MTases require a cofactor for their metabolic stability and enzymatic activity. TRMT112 is a small evolutionary conserved protein that acts as a co-factor and activator for different MTases involved in rRNA, tRNA and protein methylation. Using a SILAC screen, we pulled down seven methyltransferases-N6AMT1, WBSCR22, METTL5, ALKBH8, THUMPD2, THUMPD3 and TRMT11-as interaction partners of TRMT112. We showed that TRMT112 stabilises all seven MTases in cells. TRMT112 and MTases exhibit a strong mutual feedback loop when expressed together in cells. TRMT112 interacts with its partners in a similar way; however, single amino acid mutations on the surface of TRMT112 reveal several differences as well. In summary, mammalian TRMT112 can be considered as a central "hub" protein that regulates the activity of at least seven methyltransferases.


Asunto(s)
Metiltransferasas/metabolismo , Mapas de Interacción de Proteínas , Línea Celular Tumoral , Estabilidad de Enzimas , Células HEK293 , Humanos , Metiltransferasas/análisis , Modelos Moleculares
4.
Immunometabolism ; 3(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178388

RESUMEN

BACKGROUND: Vascular smooth muscle cells (VSMC) exhibit phenotypic plasticity in atherosclerotic plaques, and among other approaches, has been modeled in vitro by cholesterol loading. METHODS: Meta-analysis of scRNA-seq data from VSMC lineage traced cells across five experiments of murine atherosclerosis was performed. In vivo expression profiles were compared to three in vitro datasets of VSMCs loaded with cholesterol and three datasets of polarized macrophages. RESULTS: We identified 24 cell clusters in the meta-analysis of single cells from mouse atherosclerotic lesions with notable heterogeneity across studies, especially for macrophage populations. Trajectory analysis of VSMC lineage positive cells revealed several possible paths of state transitions with one traversing from contractile VSMC to macrophages by way of a proliferative cell cluster. Transcriptome comparisons between in vivo and in vitro states underscored that data from three in vitro cholesterol-treated VSMC experiments did not mirror cell state transitions observed in vivo. However, all in vitro macrophage profiles analyzed (M1, M2, and oxLDL) were more similar to in vivo profiles of macrophages than in vitro VSMCs were to in vivo profiles of VSMCs. oxLDL loaded macrophages showed the most similarity to in vivo states. In contrast to the in vitro data, comparison between mouse and human in vivo data showed many similarities. CONCLUSIONS: Identification of the sources of variation across single cell datasets in atherosclerosis will be an important step towards understanding VSMC fate transitions in vivo. Also, we conclude that cholesterol-loading in vitro is insufficient to model the VSMC cell state transitions observed in vivo, which underscores the need to develop better cell models. Mouse models, however, appear to reproduce a number of the features of VSMCs in human plaques.

7.
Am J Hum Genet ; 108(3): 411-430, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33626337

RESUMEN

Genetic factors underlying coronary artery disease (CAD) have been widely studied using genome-wide association studies (GWASs). However, the functional understanding of the CAD loci has been limited by the fact that a majority of GWAS variants are located within non-coding regions with no functional role. High cholesterol and dysregulation of the liver metabolism such as non-alcoholic fatty liver disease confer an increased risk of CAD. Here, we studied the function of non-coding single-nucleotide polymorphisms in CAD GWAS loci located within liver-specific enhancer elements by identifying their potential target genes using liver cis-eQTL analysis and promoter Capture Hi-C in HepG2 cells. Altogether, 734 target genes were identified of which 121 exhibited correlations to liver-related traits. To identify potentially causal regulatory SNPs, the allele-specific enhancer activity was analyzed by (1) sequence-based computational predictions, (2) quantification of allele-specific transcription factor binding, and (3) STARR-seq massively parallel reporter assay. Altogether, our analysis identified 1,277 unique SNPs that display allele-specific regulatory activity. Among these, susceptibility enhancers near important cholesterol homeostasis genes (APOB, APOC1, APOE, and LIPA) were identified, suggesting that altered gene regulatory activity could represent another way by which genetic variation regulates serum lipoprotein levels. Using CRISPR-based perturbation, we demonstrate how the deletion/activation of a single enhancer leads to changes in the expression of many target genes located in a shared chromatin interaction domain. Our integrative genomics approach represents a comprehensive effort in identifying putative causal regulatory regions and target genes that could predispose to clinical manifestation of CAD by affecting liver function.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Elementos de Facilitación Genéticos/genética , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo/genética , Alelos , Cromatina/genética , Enfermedad de la Arteria Coronaria/patología , Femenino , Estudio de Asociación del Genoma Completo/métodos , Genómica , Humanos , Hígado/metabolismo , Masculino , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Factores de Riesgo
8.
Am J Hum Genet ; 106(6): 748-763, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32442411

RESUMEN

The identification of causal variants and mechanisms underlying complex disease traits in humans is important for the progress of human disease genetics; this requires finding strategies to detect functional regulatory variants in disease-relevant cell types. To achieve this, we collected genetic and transcriptomic data from the aortic endothelial cells of up to 157 donors and four epigenomic phenotypes in up to 44 human donors representing individuals of both sexes and three major ancestries. We found thousands of expression quantitative trait loci (eQTLs) at all ranges of effect sizes not detected by the Gene-Tissue Expression Project (GTEx) in human tissues, showing that novel biological relationships unique to endothelial cells (ECs) are enriched in this dataset. Epigenetic profiling enabled discovery of over 3,000 regulatory elements whose activity is modulated by genetic variants that most frequently mutated ETS, AP-1, and NF-kB binding motifs, implicating these motifs as governors of EC regulation. Using CRISPR interference (CRISPRi), allele-specific reporter assays, and chromatin conformation capture, we validated candidate enhancer variants located up to 750 kb from their target genes, VEGFC, FGD6, and KIF26B. Regulatory SNPs identified were enriched in coronary artery disease (CAD) loci, and this result has specific implications for PECAM-1, FES, and AXL. We also found significant roles for EC regulatory variants in modifying the traits pulse pressure, blood protein levels, and monocyte count. Lastly, we present two unlinked SNPs in the promoter of MFAP2 that exhibit pleiotropic effects on human disease traits. Together, this supports the possibility that genetic predisposition for complex disease is manifested through the endothelium.


Asunto(s)
Enfermedad/genética , Células Endoteliales/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Variación Genética/genética , Alelos , Epigénesis Genética/genética , Femenino , Humanos , Cinesinas/genética , Masculino , Mutación , FN-kappa B/metabolismo , Polimorfismo de Nucleótido Simple/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Sitios de Carácter Cuantitativo/genética , Factor de Transcripción AP-1/metabolismo , Regulador Transcripcional ERG/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética
9.
Biomolecules ; 9(9)2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31466382

RESUMEN

Methylation is a widespread modification occurring in DNA, RNA and proteins. The N6AMT1 (HEMK2) protein has DNA N6-methyladenine as well as the protein glutamine and histone lysine methyltransferase activities. The human genome encodes two different isoforms of N6AMT1, the major isoform and the alternatively spliced isoform, where the substrate binding motif is missing. Several RNA methyltransferases involved in ribosome biogenesis, tRNA methylation and translation interact with the common partner, the TRMT112 protein. In this study, we show that TRMT112 regulates the expression of N6AMT1 isoforms in mammalian cells. Both isoforms are equally expressed on mRNA level, but only isoform 1 is detected on the protein level in human cells. We show that the alternatively spliced isoform is not able to interact with TRMT112 and when translated, is rapidly degraded from the cells. This suggests that TRMT112 is involved in cellular quality control ensuring that N6AMT1 isoform with missing substrate binding domain is eliminated from the cells. The down-regulation of TRMT112 does not affect the N6AMT1 protein levels in cells, suggesting that the two proteins of TRMT112 network, WBSCR22 and N6AMT1, are differently regulated by their common cofactor.


Asunto(s)
Metiltransferasas/metabolismo , Isoformas de Proteínas/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Línea Celular Tumoral , Células HeLa , Humanos , Leupeptinas/farmacología , Metiltransferasas/química , Metiltransferasas/genética , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Isoformas de Proteínas/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Interferencia de ARN , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética
10.
Oncol Lett ; 16(1): 211-218, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29928403

RESUMEN

Melanoma-associated antigen A (MAGEA) represent a class of tumor antigens that are expressed in a variety of malignant tumors, however, their expression in healthy normal tissues is restricted to germ cells of testis, fetal ovary and placenta. The restricted expression and immunogenicity of these antigens make them ideal targets for immunotherapy in human cancer. In the present study the presence of naturally occurring antibodies against two MAGEA subfamily proteins, MAGEA4 and MAGEA10, was analyzed in patients with melanoma at different stages of disease. Results indicated that the anti-MAGEA4/MAGEA10 immune response in melanoma patients was heterogeneous, with only ~8% of patients having a strong response. Comparing the number of strongly responding patients between different stages of disease revealed that the highest number of strong responses was detected among stage II melanoma patients. These findings support the model that the immune system is involved in the control of melanoma in the early stages of disease.

11.
Sci Rep ; 6: 29425, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27403717

RESUMEN

Extracellular vesicles are membraneous particles released by a variety of cells into the extracellular microenvironment. Retroviruses utilize the cellular vesiculation pathway for virus budding/assembly and the retrovirus Gag protein induces the spontaneous formation of microvesicles or virus-like particles (VLPs) when expressed in the mammalian cells. In this study, five different melanoma antigens, MAGEA4, MAGEA10, MART1, TRP1 and MCAM, were incorporated into the VLPs and their localization within the particles was determined. Our data show that the MAGEA4 and MAGEA10 proteins as well as MCAM are expressed on the surface of VLPs. The compartmentalization of exogenously expressed cancer antigens within the VLPs did not depend on the localization of the protein within the cell. Comparison of the protein content of VLPs by LC-MS/MS-based label-free quantitative proteomics showed that VLPs carrying different cancer antigens are very similar to each other, but differ to some extent from VLPs without recombinant antigen. We suggest that retrovirus Gag based virus-like particles carrying recombinant antigens have a potential to be used in cancer immunotherapy.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Productos del Gen gag/metabolismo , Virus de la Leucemia Murina , Antígenos Específicos del Melanoma/metabolismo , Animales , Línea Celular Tumoral , Medios de Cultivo , Productos del Gen gag/genética , Inmunoterapia/métodos , Antígenos Específicos del Melanoma/genética , Antígenos Específicos del Melanoma/inmunología , Ratones , Neoplasias/terapia , Proteómica
12.
PLoS One ; 10(7): e0133841, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26214185

RESUMEN

The human WBSCR22 protein is a 18S rRNA methyltransferase involved in pre-rRNA processing and ribosome 40S subunit biogenesis. Recent studies have shown that the protein function in ribosome synthesis is independent of its enzymatic activity. In this work, we have studied the WBSCR22 protein interaction partners by SILAC-coupled co-immunoprecipitation assay and identified TRMT112 as the interaction partner of WBSCR22. Knock-down of TRMT112 expression decreased the WBSCR22 protein level in mammalian cells, suggesting that the stability of WBSCR22 is regulated through the interaction with TRMT112. The localization of the TRMT112 protein is determined by WBSCR22, and the WBSCR22-TRMT112 complex is localized in the cell nucleus. We provide evidence that the interaction between WBSCR22/Bud23 and TRMT112/Trm112 is conserved between mammals and yeast, suggesting that the function of TRMT112 as a co-activator of methyltransferases is evolutionarily conserved. Finally, we show that the transiently expressed WBSCR22 protein is ubiquitinated and degraded through the proteasome pathway, revealing the tight control of the WBSCR22 protein level in the cells.


Asunto(s)
Núcleo Celular/enzimología , Metiltransferasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Línea Celular Tumoral , Núcleo Celular/genética , Técnicas de Silenciamiento del Gen , Humanos , Metiltransferasas/genética , Complejo de la Endopetidasa Proteasomal/genética , ARN Ribosómico 18S , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ubiquitina/genética
13.
PLoS One ; 8(9): e75686, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086612

RESUMEN

The human WBSCR22 protein was previously shown to be up-regulated in invasive breast cancer and its ectopic expression enhances tumor cell survival in the vasculature. In the current study, we show that the WBSCR22 protein is important for cell growth. Knock-down of WBSCR22 with siRNA results in slower growth of WBSCR22-depleted cells. Treatment with siWBSCR22 causes defects in the processing of pre-rRNAs and reduces the level of free 40S ribosomal subunit, suggesting that WBSCR22 is involved in ribosome small subunit biosynthesis. The human WBSCR22 partially complements the growth of WBSCR22 yeast homologue, bud23 deletion mutant suggesting that the human WBSCR22 is a functional homologue of yeast Bud23. WBSCR22 is localized throughout the cell nucleus and is not stably associated with ribosomal subunits within the cell nucleus. We also show that the WBSCR22 protein level is decreased in lymphoblastoid cell lines derived from William-Beuren Syndrome (WBS) patients compared to healthy controls. Our data suggest that the WBSCR22 protein is a ribosome biogenesis factor involved in the biosynthesis of 40S ribosomal particles in mammalian cells.


Asunto(s)
Metiltransferasas/genética , Metiltransferasas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Línea Celular , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Células HEK293 , Células HeLa , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Eliminación de Secuencia/genética , Levaduras/genética , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...