Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2314763121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557194

RESUMEN

Although sudden sensorineural hearing loss (SSNHL) is a serious condition, there are currently no approved drugs for its treatment. Nevertheless, there is a growing understanding that the cochlear pathologies that underlie SSNHL include apoptotic death of sensory outer hair cells (OHCs) as well as loss of ribbon synapses connecting sensory inner hair cells (IHCs) and neurites of the auditory nerve, designated synaptopathy. Noise-induced hearing loss (NIHL) is a common subtype of SSNHL and is widely used to model hearing loss preclinically. Here, we demonstrate that a single interventive application of a small pyridoindole molecule (AC102) into the middle ear restored auditory function almost to prenoise levels in a guinea pig model of NIHL. AC102 prevented noise-triggered loss of OHCs and reduced IHC synaptopathy suggesting a role of AC102 in reconnecting auditory neurons to their sensory target cells. Notably, AC102 exerted its therapeutic properties over a wide frequency range. Such strong improvements in hearing have not previously been demonstrated for other therapeutic agents. In vitro experiments of a neuronal damage model revealed that AC102 protected cells from apoptosis and promoted neurite growth. These effects may be explained by increased production of adenosine triphosphate, indicating improved mitochondrial function, and reduced levels of reactive-oxygen species which prevents the apoptotic processes responsible for OHC death. This action profile of AC102 might be causal for the observed hearing recovery in in vivo models.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Pérdida Auditiva Sensorineural , Cobayas , Animales , Audición , Cóclea , Ruido/efectos adversos , Células Ciliadas Auditivas Externas/fisiología , Umbral Auditivo
2.
Immun Ageing ; 20(1): 52, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37833781

RESUMEN

BACKGROUND: Age-associated deterioration of the immune system contributes to a chronic low-grade inflammatory state known as "inflammaging" and is implicated in the pathogenesis of late-onset Alzheimer's disease (LOAD). Whether changes in the tissue environment caused by circulatory factors associated with aging may alter the innate immune response is unknown. Monocyte-derived macrophages (Mo-MФs) infiltrating the brain alongside microglia are postulated to play a modulatory role in LOAD and both express triggering receptor expressed on myeloid cells 2 (TREM2). Apolipoprotein E (APOE) acts as a ligand for TREM2, and their role in amyloid beta (Aß) clearance highlights their importance in LOAD. However, the influence of the patient's own milieu (autologous serum) on the synthesis of TREM2 and APOE in infiltrating macrophages remains unknown. OBJECTIVES: To functionally assess patient-specific TREM2 and APOE synthesis, we designed a personalized assay based on Mo-MФs using monocytes from LOAD patients and matched controls (CO). We assessed the influence of each participant's own milieu, by examining the effect of short- (1 day) and long- (10 days) term differentiation of the cells in the presence of the donor´s autologous serum (AS) into M1-, M2- or M0-macrophages. Additionally, sex differences and Aß-uptake ability in short- and long-term differentiated Mo-MФs were assessed. RESULTS: We showed a time-dependent increase in TREM2 and APOE protein levels in LOAD- and CO-derived cells. While AS did not differentially modulate TREM2 compared to standard fetal calf serum (FCS), AS decreased APOE levels in M2 macrophages but increased levels in M1 macrophages. Interestingly, higher levels of TREM2 and lower levels of APOE were detected in female- than in male- LOAD patients. Finally, we report decreased Aß-uptake in long-term differentiated CO- and LOAD-derived cells, particularly in APOEε4(+) carriers. CONCLUSIONS: We demonstrate for the first time the suitability of a personalized Mo-MФ cell culture-based assay for studying functional TREM2 and APOE synthesis in a patient's own aged milieu. Our strategy may thus provide a useful tool for future research on diagnostic and therapeutic aspects of personalized medicine.

3.
Cell Mol Neurobiol ; 43(6): 3047-3060, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37198381

RESUMEN

Neuroinflammation plays a pivotal role in the pathogenesis of Alzheimer`s disease (AD). Brain macrophage populations differentially modulate the immune response to AD pathology according to the disease stage. Triggering receptor expressed on myeloid cells 2 (TREM2) is known to play a protective role in AD and has been postulated as a putative therapeutic target. Whether, and to which extent TREM2 expression can be modulated in the aged macrophage population of the brain is unknown, emphasizing the need for a human, patient-specific model. Using cells from AD patients and matched controls (CO) we designed an assay based on monocyte-derived macrophages to mimic brain-infiltrating macrophages and to assess the individualized TREM2 synthesis in vitro. We systematically assessed the effects of short-term (acute-2 days) and long-term (chronic-10 days) M1- (LPS), M2- (IL-10, IL-4, TGF-ß), and M0- (vehicle) macrophage differentiation on TREM2 synthesis. Moreover, the effects of retinoic acid (RA), a putative TREM2 modulator, on individualized TREM2 synthesis were assessed. We report increased TREM2 synthesis after acute M2- compared to M1-differentiation in CO- but not AD-derived cells. Chronic M2- and M0-differentiation however resulted in an increase of TREM2 synthesis in both AD- and CO-derived cells while chronic M1-differentiation increased TREM2 in AD-derived cells only. Moreover, chronic M2- and M0-differentiation improved the amyloid-ß (Aß) uptake of the CO-derived whereas M1-differentiation of the AD-derived cells. Interestingly, RA-treatment did not modulate TREM2. In the age of personalized medicine, our individualized model could be used to screen for potential drug-mediated treatment responses in vitro. Triggering receptor expressed on myeloid cells 2 (TREM2) has been postulated as a putative therapeutic target in Alzheimer's disease (AD). Using cells from AD patients and matched controls (CO), we designed a monocyte-derived macrophages (Mo-MФs) assay to assess the individualized TREM2 synthesis in vitro. We report increased TREM2 synthesis after acute M2- compared to M1- macrophage differentiation in CO- but not AD-derived cells. Chronic M2- and M0- differentiation however resulted in an increase of TREM2 synthesis in both AD- and CO-derived cells while chronic M1-differentiation increased TREM2 in AD-cells only.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Macrófagos/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Diferenciación Celular , Microglía/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos
4.
Transl Psychiatry ; 13(1): 67, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36813763

RESUMEN

The small, hormone-like molecule retinoic acid (RA) is a vital regulator in several neurobiological processes that are affected in depression. Next to its involvement in dopaminergic signal transduction, neuroinflammation, and neuroendocrine regulation, recent studies highlight the role of RA in homeostatic synaptic plasticity and its link to neuropsychiatric disorders. Furthermore, experimental studies and epidemiological evidence point to the dysregulation of retinoid homeostasis in depression. Based on this evidence, the present study investigated the putative link between retinoid homeostasis and depression in a cohort of 109 patients with major depressive disorder (MDD) and healthy controls. Retinoid homeostasis was defined by several parameters. Serum concentrations of the biologically most active Vitamin A metabolite, all-trans RA (at-RA), and its precursor retinol (ROL) were quantified and the individual in vitro at-RA synthesis and degradation activity was assessed in microsomes of peripheral blood-derived mononuclear cells (PBMC). Additionally, the mRNA expression of enzymes relevant to retinoid signaling, transport, and metabolism were assessed. Patients with MDD had significantly higher ROL serum levels and greater at-RA synthesis activity than healthy controls providing evidence of altered retinoid homeostasis in MDD. Furthermore, MDD-associated alterations in retinoid homeostasis differed between men and women. This study is the first to investigate peripheral retinoid homeostasis in a well-matched cohort of MDD patients and healthy controls, complementing a wealth of preclinical and epidemiological findings that point to a central role of the retinoid system in depression.


Asunto(s)
Trastorno Depresivo Mayor , Retinoides , Masculino , Humanos , Femenino , Leucocitos Mononucleares/metabolismo , Tretinoina/metabolismo , Vitamina A/metabolismo , Homeostasis
5.
Brain Behav Immun ; 94: 185-195, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33607231

RESUMEN

Accumulating evidence indicates the specific involvement of inflammatory processes in major depressive disorder (MDD), particularly affecting innate immunity. Most immune alterations have so far been determined based on plasma or cerebrospinal fluid cytokine levels. To precisely characterize putative innate immune-mediated mechanisms in MDD pathogenesis, we sought to disentangle "state" from "trait" effects in a patient-specific cell model by quantifying the impact of patient-derived autologous sera (AS) on patient-specific monocyte-derived macrophages (Mo-MФs) polarization in vitro. Mo-MФs were generated from 28 patients with moderate to severe MDD and 28 age-, sex-, smoking status- and BMI-matched healthy controls (HC). Cells were treated either with AS or fetal calf serum (FCS) and polarized into M1 (LPS), M2 (IL-10, IL-4, TGF-ß) or M0 (unstimulated) macrophages. Polarization capacity was quantified by means of specific M1 (CCR7, CD86, CXCL10, IL-12p70, TNF-α, IL-6, IL-1ß, IL-12p40, IL-23, IP-10) and M2 (CD206, IL-10, TARC, IL-1RA) markers. Compared to HC, significantly increased M1-polarization was observed for MDD patients in the presence of FCS, however, polarization in AS enriched media determined an increased M2-polarization in patients. Moreover, female MDD patients exhibited increased M1- and decreased M2-polarization in both conditions compared to male MDD patients. Our data suggests that Mo-MФs derived from patients with MDD exhibit facilitated M1-polarization under traditional cell culture conditions and an increased potential for M2-polarization when cultured in AS. Striking inter-individual variation and pronounced gender effects highlight the potential utility of our personalized cell model-based approach to aid diagnostic and therapeutic decisions.


Asunto(s)
Trastorno Depresivo Mayor , Técnicas de Cultivo de Célula , Citocinas , Femenino , Humanos , Lipopolisacáridos , Macrófagos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...