Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
FASEB J ; 37(12): e23282, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37994700

RESUMEN

Prorenin and the prorenin receptor ((P)RR) are important, yet controversial, members of the renin-angiotensin-aldosterone system. The ((P)RR) is expressed throughout the body, including the vasculature, however, the direct effect of prorenin on arterial contractility is yet to be determined. Within rat mesenteric arteries, immunostaining and proximity ligation assays were used to determine the interacting partners of (P)RR in freshly isolated vascular smooth muscle cells (VSMCs). Wire myography examined the functional effect of prorenin. Simultaneous changes in [Ca2+ ]i and force were recorded in arteries loaded with Fura-2AM. Spontaneously transient outward currents were recorded via perforated whole-cell patch-clamp configuration in freshly isolated VSMCs. We found that the (P)RR is located within a distance of less than 40 nm from the V-ATPase, caveolin-1, ryanodine receptors, and large conductance Ca2+ -activated K+ channels (BKCa ) in VSMCs. [Ca2+ ]i imaging and isometric tension recordings indicate that 1 nM prorenin enhanced α1-adrenoreceptor-mediated contraction, associated with an increased number of Ca2+ waves, independent of voltage-gated Ca2+ channels activation. Incubation of VSMCs with 1 nM prorenin decreased the amplitude and frequency of spontaneously transient outward currents and attenuated BKCa -mediated relaxation. Inhibition of the V-ATPase with 100 nM bafilomycin prevented prorenin-mediated inhibition of BKCa -derived relaxation. Renin (1 nM) had no effect on BKCa -mediated relaxation. In conclusion, prorenin enhances arterial contractility by inhibition of BKCa and increasing intracellular Ca2+ release. It is likely that this effect is mediated through a local shift in pH upon activation of the (P)RR and stimulation of the V-ATPase.


Asunto(s)
Contracción Muscular , Renina , Ratas , Animales , Miocitos del Músculo Liso , Arterias Mesentéricas , Adenosina Trifosfatasas
2.
Clin Sci (Lond) ; 137(20): 1595-1618, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37877226

RESUMEN

In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.


Asunto(s)
Hipertensión , Accidente Cerebrovascular Isquémico , Trastornos Migrañosos , Accidente Cerebrovascular , Humanos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estudios Retrospectivos , Músculo Liso Vascular/metabolismo , Sodio/metabolismo
4.
Br J Clin Pharmacol ; 89(7): 2179-2189, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36764326

RESUMEN

AIMS: The aim of this study is to examine whether colchicine improves ß adrenoceptor-mediated vasodilation in humans by conducting a double-blinded, placebo-controlled intervention study. Colchicine treatment has known beneficial effects on cardiovascular health and reduces the incidence of cardiovascular disease. Studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation, but this has not been determined in humans. METHODS: Middle-aged men with essential hypertension were randomly assigned firstly to acute treatment with either 0.5 mg colchicine (n = 19) or placebo (n = 12). They were subsequently re-randomized for 3 weeks of treatment with either colchicine 0.5 mg twice daily (n = 16) or placebo (n = 15) followed by a washout period of 48-72 h. The vasodilator responses to isoprenaline, acetylcholine and sodium nitroprusside were determined as well as arterial pressure, arterial compliance and plasma inflammatory markers. RESULTS: Acute colchicine treatment increased isoprenaline (by 38% for the highest dose) as well as sodium nitroprusside (by 29% main effect) -induced vasodilation but had no effect on the response to acetylcholine. The 3-week colchicine treatment followed by a washout period did not induce an accumulated or sustained effect on the ß adrenoceptor response, and there was no effect on arterial pressure, arterial compliance or the level of measured inflammatory markers. CONCLUSION: Colchicine acutely enhances ß adrenoceptor- and nitric oxide-mediated changes in vascular conductance in humans, supporting that the mechanism previously demonstrated in rodents, translates to humans. The results provide novel translational evidence for a transient enhancing effect of colchicine on ß adrenoceptor-mediated vasodilation in humans with essential hypertension. CONDENSED ABSTRACT: Preclinical studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation. Here we show that this effect of colchicine can be translated to humans. Acute colchicine treatment was found to increase both isoprenaline- and sodium nitroprusside-induced vasodilation. The study provides the first translational evidence for a transient ß adrenoceptor-mediated vasodilatory effect of colchicine in humans. The finding of an acute effect suggests that it may be clinically important to maintain an adequate bioavailability of colchicine.


Asunto(s)
Acetilcolina , Vasodilatación , Masculino , Persona de Mediana Edad , Humanos , Nitroprusiato/farmacología , Isoproterenol/farmacología , Acetilcolina/farmacología , Colchicina/farmacología , Hipertensión Esencial , Receptores Adrenérgicos
5.
Heart Rhythm ; 20(8): 1136-1143, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36806574

RESUMEN

BACKGROUND: A variant in the SLC4A3 anion exchanger has been identified as a novel cause of short QT syndrome (SQTS), but the clinical importance of SLC4A3 as a cause of SQTS or sudden cardiac death remains unknown. OBJECTIVE: The purpose of this study was to investigate the prevalence of potential disease-causing variants in SQTS patients using gene panels including SLC4A3. METHODS: In this multicenter study, genetic testing was performed in 34 index patients with SQTS. The pathogenicity of novel SLC4A3variants was validated in a zebrafish embryo heart model. RESULTS: Potentially disease-causing variants were identified in 9 (26%) patients and were mainly (15%) located in SLC4A3: 4 patients heterozygous for novel nonsynonymous SLC4A3 variants-p.Arg600Cys, p.Arg621Trp, p.Glu852Asp, and p.Arg952His-and 1 patient with the known p.Arg370His variant. In other SQTS genes, potentially disease-causing variants were less frequent (2× in KCNQ1, 1× in KCNJ2, and CACNA1C each). SLC4A3 variant carriers (n = 5) had a similar heart rate but shorter QT and J point to T wave peak intervals than did noncarriers (n = 29). Knockdown of slc4a3 in zebrafish resulted in shortened heart rate-corrected QT intervals (calculated using the Bazett formula) that could be rescued by overexpression of the native human SLC4A3-encoded protein (AE3), but neither by the mutated AE3 variants p.Arg600Cys, p.Arg621Trp, p.Glu852Asp nor by p.Arg952His, suggesting pathogenicity of these variants. Dysfunction in slc4a3/AE3 was associated with alkaline cytosol and shortened action potential of cardiomyocytes. CONCLUSION: In about a quarter of patients with SQTS, a potentially disease-causing variant can be identified. Nonsynonymous variants in SLC4A3 represent the most common cause of SQTS, underscoring the importance of including SLC4A3 in the genetic screening of patients with SQTS or sudden cardiac death.


Asunto(s)
Electrocardiografía , Pez Cebra , Animales , Humanos , Arritmias Cardíacas , Muerte Súbita Cardíaca/prevención & control , Electrocardiografía/métodos
6.
J Muscle Res Cell Motil ; 44(2): 53-60, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35879488

RESUMEN

Giraffes are the highest living animals on Earth and therefore are challenged by gravity more than any other species. In particular the cardiovascular system needs to adapt to this challenge. Giraffes have a mean blood pressure around 200 mmHg, which ensures a mean arterial pressure near the head of 100 mmHg when the giraffe is standing with the neck in a near vertical position. This immediately raises several questions. How do giraffes avoid edema in the legs where the arterial pressure is 300 mmHg or higher? How does the heart produce a pressure of 200 mmHg, and what is the energy required for this endeavor? How can the kidney tolerate a pressure of about 200 mmHg and does this mean that giraffes have a high glomerular filtration rate? What is the arterial pressure in the head of giraffes when they drink, and how is perfusion of the brain maintained when they lift their head after drinking? In this short review, we present some answers to these questions.


Asunto(s)
Sistema Cardiovascular , Jirafas , Animales , Jirafas/fisiología
7.
Invest Ophthalmol Vis Sci ; 63(13): 7, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36478197

RESUMEN

Purpose: Vasomotion is spontaneous oscillations in the diameter of resistance vessels with derived effects on blood flow, and it has been proposed that disturbances in vasomotion may be involved in retinal vascular disease. The purpose of this study was to investigate whether retinal vasomotion shows regional variation and is modified by activated autoregulation. Methods: Video recordings of the diameter of retinal arterioles previously obtained from 55 normal persons were subjected to Fourier analysis to characterize the frequencies and propagation of spontaneous diameter changes in retinal arterioles. The analyses were performed on peripapillary temporal retinal arterioles, on arteriolar branches toward the macular area and the retinal periphery, and were performed during rest, during an increase in the arterial blood pressure induced by isometric exercise, and during increased retinal metabolism induced by flickering light. Results: There was no propagation of diameter changes along the studied vascular segments. Isometric exercise constricted the arterioles significantly by (mean ± SD) 1.76% ± 3.56% (P = 0.02) and increased the power of diameter oscillations at very low frequencies (0.1-1.4 c/min). Flicker stimulation dilated the arterioles significantly by (mean ± SD) 5.10% ± 2.91% (P < 0.0001) and reduced the power of diameter oscillations at all but the very low frequencies (P < 0.006 for all comparisons). Flicker-induced dilation and changes in hydraulic conductance were lower in peripheral than in macular arterioles. Conclusions: Retinal vasomotion in normal persons increases during increased arterial blood pressure and decreases during flicker stimulation. The findings may act as a basis for the study of vasomotion in retinal vascular disease.


Asunto(s)
Ejercicio Físico , Enfermedades Vasculares , Humanos , Descanso
8.
Front Physiol ; 13: 1007340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213229

RESUMEN

Background: Several local Ca2+ events are characterized in smooth muscle cells. We have previously shown that an inhibitor of the Na,K-ATPase, ouabain induces spatially restricted intracellular Ca2+ transients near the plasma membrane, and suggested the importance of this signaling for regulation of intercellular coupling and smooth muscle cell contraction. The mechanism behind these Na,K-ATPase-dependent "Ca2+ flashes" remains to be elucidated. In addition to its conventional ion transport function, the Na,K-ATPase is proposed to contribute to intracellular pathways, including Src kinase activation. The microtubule network is important for intracellular signaling, but its role in the Na,K-ATPase-Src kinase interaction is not known. We hypothesized the microtubule network was responsible for maintaining the Na,K-ATPase-Src kinase interaction, which enables Ca2+ flashes. Methods: We characterized Ca2+ flashes in cultured smooth muscle cells, A7r5, and freshly isolated smooth muscle cells from rat mesenteric artery. Cells were loaded with Ca2+-sensitive fluorescent dyes, Calcium Green-1/AM and Fura Red/AM, for ratiometric measurements of intracellular Ca2+. The Na,K-ATPase α2 isoform was knocked down with siRNA and the microtubule network was disrupted with nocodazole. An involvement of the Src signaling was tested pharmacologically and with Western blot. Protein interactions were validated with proximity ligation assays. Results: The Ca2+ flashes were induced by micromolar concentrations of ouabain. Knockdown of the α2 isoform Na,K-ATPase abolished Ca2+ flashes, as did inhibition of tyrosine phosphorylation with genistein and PP2, and the inhibitor of the Na,K-ATPase-dependent Src activation, pNaKtide. Ouabain-induced Ca2+ flashes were associated with Src kinase activation by phosphorylation. The α2 isoform Na,K-ATPase and Src kinase colocalized in the cells. Disruption of microtubule with nocodazole inhibited Ca2+ flashes, reduced Na,K-ATPase/Src interaction and Src activation. Conclusion: We demonstrate that the Na,K-ATPase-dependent Ca2+ flashes in smooth muscle cells require an interaction between the α2 isoform Na, K-ATPase and Src kinase, which is maintained by the microtubule network.

9.
Hypertension ; 79(10): 2214-2227, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35929419

RESUMEN

BACKGROUND: The voltage-gated potassium channel (Kv)7.4 and Kv7.5 channels contribute to the ß-adrenoceptor-mediated vasodilatation. In arteries from hypertensive rodents, the Kv7.4 channel is downregulated and function attenuated, which contributes to the reduced ß-adrenoceptor-mediated vasodilatation observed in these arteries. Recently, we showed that disruption of the microtubule network, with colchicine, or inhibition of the microtubule motor protein, dynein, with ciliobrevin D, enhanced the membrane abundance and function of Kv7.4 channels in rat mesenteric arteries. This study aimed to determine whether these pharmacological compounds can improve Kv7.4 function in third-order mesenteric arteries from the spontaneously hypertensive rat, thereby restoring the ß-adrenoceptor-mediated vasodilatation. METHODS: Wire and intravital myography was performed on normotensive and hypertensive male rat mesenteric arteries and immunostaining was performed on isolated smooth muscle cells from the same arteries. RESULTS: Using wire and intravital microscopy, we show that ciliobrevin D enhanced the ß-adrenoceptor-mediated vasodilatation by isoprenaline. This effect was inhibited partially by the Kv7 channel blocker linopirdine and was dependent on an increased functional contribution of the ß2-adrenoceptor to the isoprenaline-mediated relaxation. In mesenteric arteries from the spontaneously hypertensive rat, ciliobrevin D and colchicine both improved the isoprenaline-mediated vasorelaxation and relaxation to the Kv7.2 -7.5 activator, ML213. Immunostaining confirmed ciliobrevin D enhanced the membrane abundance of Kv7.4. As well as an increase in the function of Kv7.4, the functional changes were associated with an increase in the contribution of ß2-adrenoceptor following isoprenaline treatment. Immunostaining experiments showed ciliobrevin D prevented isoprenaline-mediated internalizationof the ß2-adrenoceptor. CONCLUSIONS: Overall, these data show that colchicine and ciliobrevin D can induce a ß2-adrenoceptor-mediated vasodilatation in arteries from the spontaneously hypertensive rat as well as reinstating Kv7.4 channel function.


Asunto(s)
Dineínas , Hipertensión , Receptores Adrenérgicos beta 2/metabolismo , Animales , Colchicina/farmacología , Dineínas/metabolismo , Dineínas/farmacología , Isoproterenol/farmacología , Masculino , Arterias Mesentéricas , Ratas , Ratas Endogámicas SHR , Receptores Adrenérgicos/metabolismo , Vasodilatación/fisiología
10.
J Am Heart Assoc ; 11(7): e021814, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35289188

RESUMEN

Background Mutations in ATP1A2 gene encoding the Na,K-ATPase α2 isoform are associated with familial hemiplegic migraine type 2. Migraine with aura is a known risk factor for heart disease. The Na,K-ATPase is important for cardiac function, but its role for heart disease remains unknown. We hypothesized that ATP1A2 is a susceptibility gene for heart disease and aimed to assess the underlying disease mechanism. Methods and Results Mice heterozygous for the familial hemiplegic migraine type 2-associated G301R mutation in the Atp1a2 gene (α2+/G301R mice) and matching wild-type controls were compared. Reduced expression of the Na,K-ATPase α2 isoform and increased expression of the α1 isoform were observed in hearts from α2+/G301R mice (Western blot). Left ventricular dilation and reduced ejection fraction were shown in hearts from 8-month-old α2+/G301R mice (cardiac magnetic resonance imaging), and this was associated with reduced nocturnal blood pressure (radiotelemetry). Cardiac function and blood pressure of 3-month-old α2+/G301R mice were similar to wild-type mice. Amplified Na,K-ATPase-dependent Src kinase/Ras/Erk1/2 (p44/42 mitogen-activated protein kinase) signaling was observed in hearts from 8-month-old α2+/G301R mice, and this was associated with mitochondrial uncoupling (respirometry), increased oxidative stress (malondialdehyde measurements), and a heart failure-associated metabolic shift (hyperpolarized magnetic resonance). Mitochondrial membrane potential (5,5´,6,6´-tetrachloro-1,1´,3,3´-tetraethylbenzimidazolocarbocyanine iodide dye assay) and mitochondrial ultrastructure (transmission electron microscopy) were similar between the groups. Proteomics of heart tissue further suggested amplified Src/Ras/Erk1/2 signaling and increased oxidative stress and provided the molecular basis for systolic dysfunction in 8-month-old α2+/G301R mice. Conclusions Our findings suggest that ATP1A2 mutation leads to disturbed cardiac metabolism and reduced cardiac function mediated via Na,K-ATPase-dependent reactive oxygen species signaling through the Src/Ras/Erk1/2 pathway.


Asunto(s)
Corazón , Trastornos Migrañosos , Migraña con Aura , ATPasa Intercambiadora de Sodio-Potasio , Animales , Corazón/fisiopatología , Heterocigoto , Ratones , Migraña con Aura/metabolismo , Mutación , Miocardio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética
11.
Am J Physiol Heart Circ Physiol ; 322(4): H681-H682, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35324333
12.
Am J Physiol Heart Circ Physiol ; 322(4): H685-H686, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35324335
13.
Microvasc Res ; 139: 104256, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34530027

RESUMEN

BACKGROUND: The purine adenosine triphosphate (ATP) plays a significant role in retinal blood flow regulation and recent evidence suggests that the vasoactive effect of the compound differs in vessels at different branching level. However, the cellular basis for the regulation of retinal blood flow mediated by ATP has only been scarcely studied. METHODS: Perfused porcine hemiretinas (n = 60) were loaded with the calcium-sensitive fluorophore Oregon Green ex vivo. Spontaneous oscillations in fluorescence were studied in perivascular cells at five different vascular branching levels ranging from the main arteriole to the capillaries, before and after the addition of intra- and extravascular ATP alone or in the presence of a P2-purinergic receptor antagonist. RESULTS: Intravascular ATP induced an overall significant (p < 0.01) constriction of (mean ± SD) -9.79 ± 13.40% and extravascular ATP an overall significant (p < 0.01) dilatation of (mean ± SD) 19.62 ± 13.47%. Spontaneous oscillations of fluorescence in perivascular cells were significantly more intense around third order arterioles than around vessels at both lower and higher branching levels (p < 0.05 for all comparisons). ATP increased intracellular fluorescence in perivascular cells of first and second order arterioles after extravascular application, and the increase correlated with the accompanying vasodilatation (p < 0.03). Blocking of P2-receptors reduced oscillating fluorescence in pre-capillary arterioles secondary to intravascular ATP (p = 0.03). CONCLUSIONS: Spontaneous oscillations of calcium-sensitive fluorescence in perivascular retinal cells differ at different vascular branching levels. Extravascular ATP increases fluorescence in cells around the larger retinal arterioles exposed to the retinal surface. Future studies should investigate calcium signaling activity in perivascular retinal cells during interventions that simulate retinal pathology such as hypoxia.


Asunto(s)
Adenosina Trifosfato/farmacología , Arteriolas/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Capilares/efectos de los fármacos , Agonistas del Receptor Purinérgico P2/farmacología , Vasos Retinianos/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Animales , Arteriolas/metabolismo , Capilares/metabolismo , Microambiente Celular , Antagonistas del Receptor Purinérgico P2/farmacología , Vasos Retinianos/metabolismo , Sus scrofa
14.
J Biol Chem ; 298(1): 101512, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34929167

RESUMEN

Resistance arteries are small blood vessels that create resistance to blood flow. In hypertension, resistance arteries undergo remodeling, affecting their ability to contract and relax appropriately. To date, no study has mapped the hypertension-related proteomic changes in resistance arteries. Using a novel data-independent acquisition-mass spectrometry (DIA-MS) approach, we determined the proteomic changes in small mesenteric and renal arteries in pre- and early-onset hypertension from the spontaneously hypertensive rat (SHR) model, which represents human primary hypertension. Compared with normotensive controls, mesenteric arteries from 12-week-old SHRs had 286 proteins that were significantly up- or downregulated, whereas 52 proteins were identified as up- or downregulated in mesenteric arteries from 6-week-old SHRs. Of these proteins, 18 were also similarly regulated in SHR renal arteries. Our pathway analyses reveal several novel pathways in the pathogenesis of hypertension. Finally, using a matrisome database, we identified 38 altered extracellular-matrix-associated proteins, many of which have never previously been associated with hypertension. Taken together, this study reveals novel proteins and mechanisms that are associated with early-onset hypertension, thereby providing novel insights into disease progression.


Asunto(s)
Hipertensión , Proteómica , Animales , Hipertensión/metabolismo , Hipertensión/patología , Espectrometría de Masas , Arterias Mesentéricas , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Resistencia Vascular
15.
Evol Med Public Health ; 9(1): 248-255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447575

RESUMEN

The evolved adaptations of other species can be a source of insight for novel biomedical innovation. Limitations of traditional animal models for the study of some pathologies are fueling efforts to find new approaches to biomedical investigation. One emerging approach recognizes the evolved adaptations in other species as possible solutions to human pathology. The giraffe heart, for example, appears resistant to pathology related to heart failure with preserved ejection fraction (HFpEF)-a leading form of hypertension-associated cardiovascular disease in humans. Here, we postulate that the physiological pressure-induced left ventricular thickening in giraffes does not result in the pathological cardiovascular changes observed in humans with hypertension. The mechanisms underlying this cardiovascular adaptation to high blood pressure in the giraffe may be a bioinspired roadmap for preventive and therapeutic strategies for human HFpEF.

16.
J Gen Physiol ; 153(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533890

RESUMEN

The dynein motor protein transports proteins away from the cell membrane along the microtubule network. Recently, we found the microtubule network was important for regulating the membrane abundance of voltage-gated Kv7.4 potassium channels in vascular smooth muscle. Here, we aimed to investigate the influence of dynein on the microtubule-dependent internalization of the Kv7.4 channel. Patch-clamp recordings from HEK293B cells showed Kv7.4 currents were increased after inhibiting dynein function with ciliobrevin D or by coexpressing p50/dynamitin, which specifically interferes with dynein motor function. Mutation of a dynein-binding site in the Kv7.4 C terminus increased the Kv7.4 current and prevented p50 interference. Structured illumination microscopy, proximity ligation assays, and coimmunoprecipitation showed colocalization of Kv7.4 and dynein in mesenteric artery myocytes. Ciliobrevin D enhanced mesenteric artery relaxation to activators of Kv7.2-Kv7.5 channels and increased membrane abundance of Kv7.4 protein in isolated smooth muscle cells and HEK293B cells. Ciliobrevin D failed to enhance the negligible S-1-mediated relaxations after morpholino-mediated knockdown of Kv7.4. Mass spectrometry revealed an interaction of dynein with caveolin-1, confirmed using proximity ligation and coimmunoprecipitation assays, which also provided evidence for interaction of caveolin-1 with Kv7.4, confirming that Kv7.4 channels are localized to caveolae in mesenteric artery myocytes. Lastly, cholesterol depletion reduced the interaction of Kv7.4 with caveolin-1 and dynein while increasing the overall membrane expression of Kv7.4, although it attenuated the Kv7.4 current in oocytes and interfered with the action of ciliobrevin D and channel activators in arterial segments. Overall, this study shows that dynein can traffic Kv7.4 channels in vascular smooth muscle in a mechanism dependent on cholesterol-rich caveolae.


Asunto(s)
Dineínas , Canales de Potasio KCNQ , Membrana Celular , Músculo Liso Vascular , Miocitos del Músculo Liso
17.
Artículo en Inglés | MEDLINE | ID: mdl-33418051

RESUMEN

The neurovascular coupling ensures that cerebral activity is matched by the relevant blood flow. The control of the blood flow is mediated by capillaries and by the precapillary aterioles. It is the tone of the mural cells, which include pericytes, smooth muscle cells and cells with intermediate phenotypes between pericytes and smooth muscle cells, that determine the the diameter of the blood vessels and consequently the flow. Here we discuss the structure of these blood vessels and the excitationcontraction coupling of the mural cells.


Asunto(s)
Arteriolas/citología , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Acoplamiento Neurovascular , Pericitos/citología , Animales , Astrocitos/citología , Calcio/metabolismo , Capilares , Historia del Siglo XX , Humanos , Microscopía , Miocitos del Músculo Liso/citología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Fenotipo , Fisiología/historia
18.
Physiol Rev ; 101(2): 495-544, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33270533

RESUMEN

Small arteries, which play important roles in controlling blood flow, blood pressure, and capillary pressure, are under nervous influence. Their innervation is predominantly sympathetic and sensory motor in nature, and while some arteries are densely innervated, others are only sparsely so. Innervation of small arteries is a key mechanism in regulating vascular resistance. In the second half of the previous century, the physiology and pharmacology of this innervation were very actively investigated. In the past 10-20 yr, the activity in this field was more limited. With this review we highlight what has been learned during recent years with respect to development of small arteries and their innervation, some aspects of excitation-release coupling, interaction between sympathetic and sensory-motor nerves, cross talk between endothelium and vascular nerves, and some aspects of their role in vascular inflammation and hypertension. We also highlight what remains to be investigated to further increase our understanding of this fundamental aspect of vascular physiology.


Asunto(s)
Arterias/inervación , Neuronas Motoras/fisiología , Células Receptoras Sensoriales/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Humanos , Hipertensión/fisiopatología , Neurotransmisores/fisiología
19.
Behav Brain Res ; 401: 113065, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33321164

RESUMEN

Despite a widespread expression pattern in the central nervous system, the role of the sodium bicarbonate cotransporter NBCn1/Slc4a7 has not been investigated for locomotor activity, emotion and cognition. Here, we addressed the behavioral consequences of NBCn1 knockout and evaluated hearing and vision that are reportedly impaired in an earlier line of NBCn1 knockout mice and may contribute to behavioral changes. In a circular open field, the knockout mice traveled a shorter distance, especially in the periphery of the chamber, than wildtype littermates. The knockout mice also traveled a shorter total distance in a home cage-like open field. Rearing and grooming behaviors were reduced. The knockout and control mice displayed similar time spent and number of open and closed arms in the elevated plus maze test, indicating negligible change in anxiety. In the Morris water maze test, both groups of mice learned the location of an escape platform within comparable time on the training trials and showed similar platform identification on the probe trial. The knockout mice maintained normal visual responses in the optokinetic drum and produced evoked potentials in response to light stimuli. However, these mice failed to produce auditory evoked potentials. qPCR revealed a robust expression of an alternatively transcribed NBCn1 variant in the knockout mouse retina. These results indicate that NBCn1 deletion leads to reduced locomotor activity in mice by affecting their exploratory behaviors or emotionality. The deletion also causes hearing loss, but its effect on vision varies between different lines of knockout mice.


Asunto(s)
Conducta Animal/fisiología , Potenciales Evocados Auditivos/genética , Conducta Exploratoria/fisiología , Pérdida Auditiva/genética , Locomoción/genética , Retina/metabolismo , Simportadores de Sodio-Bicarbonato/fisiología , Aprendizaje Espacial/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Simportadores de Sodio-Bicarbonato/genética , Trastornos de la Visión/genética
20.
Annu Rev Physiol ; 83: 1-15, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33167747

RESUMEN

Gravity affects the physiology of many animals, and the effect is, for good reason, most pronounced in tall species. The physiology-in particular, cardiovascular function-of giraffes has therefore captivated the interest of physiologists for centuries. Several studies document high mean arterial blood pressure of giraffes of about 200 mm Hg. This appears necessary to establish a cerebral perfusion pressure on the order of 100 mm Hg at the cranial end of the carotid arteries. Here, we discuss the unique characteristics of blood vessels, the heart, and the kidney of giraffes and how these functional and structural adaptations are related to very high blood pressure. We also discuss how the cerebral circulation of giraffes is established and what we know about how the blood flow and arterial and venous pressures in giraffes change when they stop to drink and subsequently lift their heads 5-6 m in one sweeping movement.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Jirafas/fisiología , Animales , Presión Sanguínea/fisiología , Circulación Cerebrovascular/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA