Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Lancet Reg Health Eur ; 46: 101091, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39403081

RESUMEN

Background: Transportation noise has been linked with cardiometabolic outcomes, yet whether it is a risk factor for atrial fibrillation (AF) remains inconclusive. We aimed to assess whether transportation noise was associated with AF in a large, pooled Nordic cohort. Methods: We pooled data from 11 Nordic cohorts, totaling 161,115 participants. Based on address history from five years before baseline until end of follow-up, road, railway, and aircraft noise was estimated at a residential level. Incident AF was ascertained via linkage to nationwide patient registries. Cox proportional hazards models were utilized to estimate associations between running 5-year time-weighted mean transportation noise (Lden) and AF after adjusting for sociodemographics, lifestyle, and air pollution. Findings: We identified 18,939 incident AF cases over a median follow-up of 19.6 years. Road traffic noise was associated with AF, with a hazard ratio (HR) and 95% confidence interval (CI) of 1.02 (1.00-1.04) per 10-dB of 5-year mean time-weighted exposure, which changed to 1.03 (1.01-1.06) when implementing a 53-dB cut-off. In effect modification analyses, the association for road traffic noise and AF appeared strongest in women and overweight and obese participants. Compared to exposures ≤40 dB, aircraft noise of 40.1-50 and > 50 dB were associated with HRs of 1.04 (0.93-1.16) and 1.12 (0.98-1.27), respectively. Railway noise was not associated with AF. We found a HR of 1.19 (1.02-1.40) among people exposed to noise from road (≥45 dB), railway (>40 dB), and aircraft (>40 dB) combined. Interpretation: Road traffic noise, and possibly aircraft noise, may be associated with elevated risk of AF. Funding: NordForsk.

2.
Environ Epidemiol ; 8(4): e319, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38983882

RESUMEN

Background: Available evidence suggests a link between exposure to transportation noise and an increased risk of obesity. We aimed to assess exposure-response functions for long-term residential exposure to road traffic, railway and aircraft noise, and markers of obesity. Methods: Our cross-sectional study is based on pooled data from 11 Nordic cohorts, including up to 162,639 individuals with either measured (69.2%) or self-reported obesity data. Residential exposure to transportation noise was estimated as a time-weighted average Lden 5 years before recruitment. Adjusted linear and logistic regression models were fitted to assess beta coefficients and odds ratios (OR) with 95% confidence intervals (CI) for body mass index, overweight, and obesity, as well as for waist circumference and central obesity. Furthermore, natural splines were fitted to assess the shape of the exposure-response functions. Results: For road traffic noise, the OR for obesity was 1.06 (95% CI = 1.03, 1.08) and for central obesity 1.03 (95% CI = 1.01, 1.05) per 10 dB Lden. Thresholds were observed at around 50-55 and 55-60 dB Lden, respectively, above which there was an approximate 10% risk increase per 10 dB Lden increment for both outcomes. However, linear associations only occurred in participants with measured obesity markers and were strongly influenced by the largest cohort. Similar risk estimates as for road traffic noise were found for railway noise, with no clear thresholds. For aircraft noise, results were uncertain due to the low number of exposed participants. Conclusion: Our results support an association between road traffic and railway noise and obesity.

3.
Environ Res ; 247: 118174, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244968

RESUMEN

BACKGROUND: Exposure to air pollution during childhood has been linked with adverse effects on cognitive development and motor function. However, limited research has been done on the associations of air pollution exposure in different microenvironments such as home, school, or while commuting with these outcomes. OBJECTIVE: To analyze the association between childhood air pollution exposure in different microenvironments and cognitive and fine motor function from six European birth cohorts. METHODS: We included 1301 children from six European birth cohorts aged 6-11 years from the HELIX project. Average outdoor air pollutants concentrations (NO2, PM2.5) were estimated using land use regression models for different microenvironments (home, school, and commute), for 1-year before the outcome assessment. Attentional function, cognitive flexibility, non-verbal intelligence, and fine motor function were assessed using the Attention Network Test, Trail Making Test A and B, Raven Colored Progressive Matrices test, and the Finger Tapping test, respectively. Adjusted linear regressions models were run to determine the association between each air pollutant from each microenvironment on each outcome. RESULTS: In pooled analysis we observed high correlation (rs = 0.9) between air pollution exposures levels at home and school. However, the cohort-by-cohort analysis revealed correlations ranging from low to moderate. Air pollution exposure levels while commuting were higher than at home or school. Exposure to air pollution in the different microenvironments was not associated with working memory, attentional function, non-verbal intelligence, and fine motor function. Results remained consistently null in random-effects meta-analysis. CONCLUSIONS: No association was observed between outdoor air pollution exposure in different microenvironments (home, school, commute) and cognitive and fine motor function in children from six European birth cohorts. Future research should include a more detailed exposure assessment, considering personal measurements and time spent in different microenvironments.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Niño , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Cognición , Estudios de Cohortes , Exposición a Riesgos Ambientales/análisis , Material Particulado/análisis , Transportes
4.
Redox Biol ; 69: 102995, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142584

RESUMEN

Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.


Asunto(s)
Isquemia Miocárdica , Ruido del Transporte , Animales , Humanos , Ruido del Transporte/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Estudios de Cohortes , Oxidación-Reducción
5.
Environ Pollut ; 334: 122143, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423460

RESUMEN

Green spaces may have beneficial impacts on children's cognition. However, few studies explored the exposure to green spaces beyond residential areas, and their availability, accessibility and uses at the same time. The aim of the present study was to describe patterns of availability, accessibility, and uses of green spaces among primary school children and to explore how these exposure dimensions are associated with cognitive development. Exposures to green space near home, school, commuting route, and other daily activity locations were assessed for 1607 children aged 6-11 years from six birth cohorts across Europe, and included variables related to: availability (NDVI buffers: 100, 300, 500 m), potential accessibility (proximity to a major green space: linear distance; within 300 m), and use (play time in green spaces: hours/year), and the number of visits to green spaces (times/previous week). Cognition measured as fluid intelligence, inattention, and working memory was assessed by computerized tests. We performed multiple linear regression analyses on pooled and imputed data adjusted for individual and area-level confounders. Availability, accessibility, and uses of green spaces showed a social gradient that was unfavorable in more vulnerable socioeconomic groups. NDVI was associated with more playing time in green spaces, but proximity to a major green space was not. Associations between green space exposures and cognitive function outcomes were not statistically significant in our overall study population. Stratification by socioeconomic variables showed that living within 300 m of a major green space was associated with improved working memory only in children in less deprived residential areas (ß = 0.30, CI: 0.09,0.51), and that more time playing in green spaces was associated with better working memory only in children of highly educated mothers (ß per IQR increase in hour/year = 0.10; 95% CI: 0.01, 0.19). However, studying within 300 m of a major green space increased inattention scores in children in more deprived areas (ß = 15.45, 95% CI: 3.50, 27.40).


Asunto(s)
Cognición , Madres , Femenino , Humanos , Niño , Análisis de Regresión , Europa (Continente) , Instituciones Académicas
6.
Environ Int ; 178: 108108, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490787

RESUMEN

BACKGROUND: Environmental noise is an important environmental exposure that can affect health. An association between transportation noise and breast cancer incidence has been suggested, although current evidence is limited. We investigated the pooled association between long-term exposure to transportation noise and breast cancer incidence. METHODS: Pooled data from eight Nordic cohorts provided a study population of 111,492 women. Road, railway, and aircraft noise were modelled at residential addresses. Breast cancer incidence (all, estrogen receptor (ER) positive, and ER negative) was derived from cancer registries. Hazard ratios (HR) were estimated using Cox Proportional Hazards Models, adjusting main models for sociodemographic and lifestyle variables together with long-term exposure to air pollution. RESULTS: A total of 93,859 women were included in the analyses, of whom 5,875 developed breast cancer. The median (5th-95th percentile) 5-year residential road traffic noise was 54.8 (40.0-67.8) dB Lden, and among those exposed, the median railway noise was 51.0 (41.2-65.8) dB Lden. We observed a pooled HR for breast cancer (95 % confidence interval (CI)) of 1.03 (0.99-1.06) per 10 dB increase in 5-year mean exposure to road traffic noise, and 1.03 (95 % CI: 0.96-1.11) for railway noise, after adjustment for lifestyle and sociodemographic covariates. HRs remained unchanged in analyses with further adjustment for PM2.5 and attenuated when adjusted for NO2 (HRs from 1.02 to 1.01), in analyses using the same sample. For aircraft noise, no association was observed. The associations did not vary by ER status for any noise source. In analyses using <60 dB as a cutoff, we found HRs of 1.08 (0.99-1.18) for road traffic and 1.19 (0.95-1.49) for railway noise. CONCLUSIONS: We found weak associations between road and railway noise and breast cancer risk. More high-quality prospective studies are needed, particularly among those exposed to railway and aircraft noise before conclusions regarding noise as a risk factor for breast cancer can be made.


Asunto(s)
Neoplasias de la Mama , Ruido del Transporte , Humanos , Femenino , Ruido del Transporte/efectos adversos , Estudios de Cohortes , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etiología , Factores de Riesgo , Estudios Prospectivos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
7.
Environ Res ; 231(Pt 1): 116077, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156356

RESUMEN

BACKGROUND: Environmental noise is of increasing concern for public health. Quantification of associated health impacts is important for regulation and preventive strategies. AIM: To estimate the burden of disease (BoD) due to road traffic and railway noise in four Nordic countries and their capitals, in terms of DALYs (Disability-Adjusted Life Years), using comparable input data across countries. METHOD: Road traffic and railway noise exposure was obtained from the noise mapping conducted according to the Environmental Noise Directive (END) as well as nationwide noise exposure assessments for Denmark and Norway. Noise annoyance, sleep disturbance and ischaemic heart disease were included as the main health outcomes, using exposure-response functions from the WHO, 2018 systematic reviews. Additional analyses included stroke and type 2 diabetes. Country-specific DALY rates from the Global Burden of Disease (GBD) study were used as health input data. RESULTS: Comparable exposure data were not available on a national level for the Nordic countries, only for capital cities. The DALY rates for the capitals ranged from 329 to 485 DALYs/100,000 for road traffic noise and 44 to 146 DALY/100,000 for railway noise. Moreover, the DALY estimates for road traffic noise increased with up to 17% upon inclusion of stroke and diabetes. DALY estimates based on nationwide noise data were 51 and 133% higher than the END-based estimates, for Norway and Denmark, respectively. CONCLUSION: Further harmonization of noise exposure data is required for between-country comparisons. Moreover, nationwide noise models indicate that DALY estimates based on END considerably underestimate national BoD due to transportation noise. The health-related burden of traffic noise was comparable to that of air pollution, an established risk factor for disease in the GBD framework. Inclusion of environmental noise as a risk factor in the GBD is strongly encouraged.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ruido del Transporte , Humanos , Ruido del Transporte/efectos adversos , Factores de Riesgo , Países Escandinavos y Nórdicos/epidemiología , Costo de Enfermedad , Exposición a Riesgos Ambientales
8.
Environ Res ; 224: 115454, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764429

RESUMEN

Background Colon cancer incidence is rising globally, and factors pertaining to urbanization have been proposed involved in this development. Traffic noise may increase colon cancer risk by causing sleep disturbance and stress, thereby inducing known colon cancer risk-factors, e.g. obesity, diabetes, physical inactivity, and alcohol consumption, but few studies have examined this. Objectives The objective of this study was to investigate the association between traffic noise and colon cancer (all, proximal, distal) in a pooled population of 11 Nordic cohorts, totaling 155,203 persons. Methods We identified residential address history and estimated road, railway, and aircraft noise, as well as air pollution, for all addresses, using similar exposure models across cohorts. Colon cancer cases were identified through national registries. We analyzed data using Cox Proportional Hazards Models, adjusting main models for harmonized sociodemographic and lifestyle data. Results During follow-up (median 18.8 years), 2757 colon cancer cases developed. We found a hazard ratio (HR) of 1.05 (95% confidence interval (CI): 0.99-1.10) per 10-dB higher 5-year mean time-weighted road traffic noise. In sub-type analyses, the association seemed confined to distal colon cancer: HR 1.06 (95% CI: 0.98-1.14). Railway and aircraft noise was not associated with colon cancer, albeit there was some indication in sub-type analyses that railway noise may also be associated with distal colon cancer. In interaction-analyses, the association between road traffic noise and colon cancer was strongest among obese persons and those with high NO2-exposure. Discussion A prominent study strength is the large population with harmonized data across eleven cohorts, and the complete address-history during follow-up. However, each cohort estimated noise independently, and only at the most exposed façade, which may introduce exposure misclassification. Despite this, the results of this pooled study suggest that traffic noise may be a risk factor for colon cancer, especially of distal origin.


Asunto(s)
Contaminación del Aire , Neoplasias del Colon , Ruido del Transporte , Humanos , Estudios de Cohortes , Factores de Riesgo , Exposición a Riesgos Ambientales/análisis , Dinamarca/epidemiología
9.
Environ Health Perspect ; 131(1): 17003, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607286

RESUMEN

BACKGROUND: Transportation noise may induce cardiovascular disease, but the public health implications are unclear. OBJECTIVES: The study aimed to assess exposure-response relationships for different transportation noise sources and ischemic heart disease (IHD), including subtypes. METHODS: Pooled analyses were performed of nine cohorts from Denmark and Sweden, together including 132,801 subjects. Time-weighted long-term exposure to road, railway, and aircraft noise, as well as air pollution, was estimated based on residential histories. Hazard ratios (HRs) were calculated using Cox proportional hazards models following adjustment for lifestyle and socioeconomic risk factors. RESULTS: A total of 22,459 incident cases of IHD were identified during follow-up from national patient and mortality registers, including 7,682 cases of myocardial infarction. The adjusted HR for IHD was 1.03 [95% confidence interval (CI) 1.00, 1.05] per 10 dB Lden for both road and railway noise exposure during 5 y prior to the event. Higher risks were indicated for IHD excluding angina pectoris cases, with HRs of 1.06 (95% CI: 1.03, 1.08) and 1.05 (95% CI: 1.01, 1.08) per 10 dB Lden for road and railway noise, respectively. Corresponding HRs for myocardial infarction were 1.02 (95% CI: 0.99, 1.05) and 1.04 (95% CI: 0.99, 1.08). Increased risks were observed for aircraft noise but without clear exposure-response relations. A threshold at around 55 dB Lden was suggested in the exposure-response relation for road traffic noise and IHD. DISCUSSION: Exposure to road, railway, and aircraft noise in the prior 5 y was associated with an increased risk of IHD, particularly after exclusion of angina pectoris cases, which are less well identified in the registries. https://doi.org/10.1289/EHP10745.


Asunto(s)
Infarto del Miocardio , Isquemia Miocárdica , Ruido del Transporte , Humanos , Ruido del Transporte/efectos adversos , Exposición a Riesgos Ambientales , Isquemia Miocárdica/epidemiología , Infarto del Miocardio/epidemiología , Angina de Pecho
10.
Lancet Public Health ; 7(7): e593-e605, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35779543

RESUMEN

BACKGROUND: Geographical differences in health outcomes are reported in many countries. Norway has led an active policy aiming for regional balance since the 1970s. Using data from the Global Burden of Disease Study (GBD) 2019, we examined regional differences in development and current state of health across Norwegian counties. METHODS: Data for life expectancy, healthy life expectancy (HALE), years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) in Norway and its 11 counties from 1990 to 2019 were extracted from GBD 2019. County-specific contributors to changes in life expectancy were compared. Inequality in disease burden was examined by use of the Gini coefficient. FINDINGS: Life expectancy and HALE improved in all Norwegian counties from 1990 to 2019. Improvements in life expectancy and HALE were greatest in the two counties with the lowest values in 1990: Oslo, in which life expectancy and HALE increased from 71·9 years (95% uncertainty interval 71·4-72·4) and 63·0 years (60·5-65·4) in 1990 to 81·3 years (80·0-82·7) and 70·6 years (67·4-73·6) in 2019, respectively; and Troms og Finnmark, in which life expectancy and HALE increased from 71·9 years (71·5-72·4) and 63·5 years (60·9-65·6) in 1990 to 80·3 years (79·4-81·2) and 70·0 years (66·8-72·2) in 2019, respectively. Increased life expectancy was mainly due to reductions in cardiovascular disease, neoplasms, and respiratory infections. No significant differences between the national YLD or DALY rates and the corresponding age-standardised rates were reported in any of the counties in 2019; however, Troms og Finnmark had a higher age-standardised YLL rate than the national rate (8394 per 100 000 [95% UI 7801-8944] vs 7536 per 100 000 [7391-7691]). Low inequality between counties was shown for life expectancy, HALE, all level-1 causes of DALYs, and exposure to level-1 risk factors. INTERPRETATION: Over the past 30 years, Norway has reduced inequality in disease burden between counties. However, inequalities still exist at a within-county level and along other sociodemographic gradients. Because of insufficient Norwegian primary data, there remains substantial uncertainty associated with regional estimates for non-fatal disease burden and exposure to risk factors. FUNDING: Bill & Melinda Gates Foundation, Research Council of Norway, and Norwegian Institute of Public Health.


Asunto(s)
Carga Global de Enfermedades , Esperanza de Vida , Costo de Enfermedad , Esperanza de Vida Saludable , Humanos , Noruega/epidemiología
11.
Occup Environ Med ; 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35450950

RESUMEN

OBJECTIVES: To investigate the association between occupational noise exposure and stroke incidence in a pooled study of five Scandinavian cohorts (NordSOUND). METHODS: We pooled and harmonised data from five Scandinavian cohorts resulting in 78 389 participants. We obtained job data from national registries or questionnaires and recoded these to match a job-exposure matrix developed in Sweden, which specified the annual average daily noise exposure in five exposure classes (LAeq8h): <70, 70-74, 75-79, 80-84, ≥85 dB(A). We identified residential address history and estimated 1-year average road traffic noise at baseline. Using national patient and mortality registers, we identified 7777 stroke cases with a median follow-up of 20.2 years. Analyses were conducted using Cox proportional hazards models adjusting for individual and area-level potential confounders. RESULTS: Exposure to occupational noise at baseline was not associated with overall stroke in the fully adjusted models. For ischaemic stroke, occupational noise was associated with HRs (95% CI) of 1.08 (0.98 to 1.20), 1.09 (0.97 to 1.24) and 1.06 (0.92 to 1.21) in the 75-79, 80-84 and ≥85 dB(A) exposure groups, compared with <70 dB(A), respectively. In subanalyses using time-varying occupational noise exposure, we observed an indication of higher stroke risk among the most exposed (≥85 dB(A)), particularly when restricting analyses to people exposed to occupational noise within the last year (HR: 1.27; 95% CI: 0.99 to 1.63). CONCLUSIONS: We found no association between occupational noise and risk of overall stroke after adjustment for confounders. However, the non-significantly increased risk of ischaemic stroke warrants further investigation.

12.
Environ Res ; 211: 113109, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35292243

RESUMEN

Exposure to air pollution influences children's health, however, the biological mechanisms underlying these effects are not completely elucidated. We investigated the association between short- and medium-term outdoor air pollution exposure with protein profiles and their link with blood pressure in 1170 HELIX children aged 6-11 years. Different air pollutants (NO2, PM10, PM2.5, and PM2.5abs) were estimated based on residential and school addresses at three different windows of exposure (1-day, 1-week, and 1-year before clinical and molecular assessment). Thirty-six proteins, including adipokines, cytokines, or apolipoproteins, were measured in children's plasma using Luminex. Systolic and diastolic blood pressure (SBP and DBP) were measured following a standardized protocol. We performed an association study for each air pollutant at each location and time window and each outcome, adjusting for potential confounders. After correcting for multiple-testing, hepatocyte growth factor (HGF) and interleukin 8 (IL8) levels were positively associated with 1-week home exposure to some of the pollutants (NO2, PM10, or PM2.5). NO2 1-week home exposure was also related to higher SBP. The mediation study suggested that HGF could explain 19% of the short-term effect of NO2 on blood pressure, but other study designs are needed to prove the causal directionality between HGF and blood pressure.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Presión Sanguínea , Niño , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Material Particulado/toxicidad
13.
BMJ Open ; 12(1): e052537, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35074814

RESUMEN

INTRODUCTION: The European climate is getting warmer and the impact on childhood health and development is insufficiently understood. Equally, how heat-related health risks can be reduced through nature-based solutions, such as exposure to urban natural environments, is unknown. Green CURe In Outdoor CITY spaces (Green CURIOCITY) will analyse how heat exposure during pregnancy affects birth outcomes and how long-term heat exposure may influence children's neurodevelopment. We will also investigate if adverse effects can be mitigated by urban natural environments. A final goal is to visualise intraurban patterns of heat vulnerability and assist planning towards healthier cities. METHODS AND ANALYSIS: We will use existing data from the Human Early-Life Exposure cohort, which includes information on birth outcomes and neurodevelopment from six European birth cohorts. The cohort is linked to data on prenatal heat exposure and impact on birth outcomes will be analysed with logistic regression models, adjusting for air pollution and noise and sociobehavioural covariates. Similarly, impact of cumulative and immediate heat exposure on neurodevelopmental outcomes at age 5 will be assessed. For both analyses, the potentially moderating impact of natural environments will be quantified. For visualisation, Geographical information systems data will be combined to develop vulnerability maps, demonstrating urban 'hot spots' where the risk of negative impacts of heat is aggravated due to sociodemographic and land use patterns. Finally, geospatial and meteorological data will be used for informing GreenUr, an existing software prototype developed by the WHO Regional Office for Europe to quantify health impacts and augment policy tools for urban green space planning. ETHICS AND DISSEMINATION: The protocol was approved by the Comité Ético de Investigación Clínica Parc de Salut MAR, Spain. Findings will be published in peer-reviewed journals and presented at policy events. Through stakeholder engagement, the results will also reach user groups and practitioners.


Asunto(s)
Calor , Parques Recreativos , Contaminación del Aire , Cohorte de Nacimiento , Niño , Preescolar , Ciudades , Estudios de Cohortes , Femenino , Calor/efectos adversos , Humanos , Embarazo
14.
Environ Epidemiol ; 5(5): e166, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34934888

RESUMEN

Early life stages are vulnerable to environmental hazards and present important windows of opportunity for lifelong disease prevention. This makes early life a relevant starting point for exposome studies. The Advancing Tools for Human Early Lifecourse Exposome Research and Translation (ATHLETE) project aims to develop a toolbox of exposome tools and a Europe-wide exposome cohort that will be used to systematically quantify the effects of a wide range of community- and individual-level environmental risk factors on mental, cardiometabolic, and respiratory health outcomes and associated biological pathways, longitudinally from early pregnancy through to adolescence. Exposome tool and data development include as follows: (1) a findable, accessible, interoperable, reusable (FAIR) data infrastructure for early life exposome cohort data, including 16 prospective birth cohorts in 11 European countries; (2) targeted and nontargeted approaches to measure a wide range of environmental exposures (urban, chemical, physical, behavioral, social); (3) advanced statistical and toxicological strategies to analyze complex multidimensional exposome data; (4) estimation of associations between the exposome and early organ development, health trajectories, and biological (metagenomic, metabolomic, epigenetic, aging, and stress) pathways; (5) intervention strategies to improve early life urban and chemical exposomes, co-produced with local communities; and (6) child health impacts and associated costs related to the exposome. Data, tools, and results will be assembled in an openly accessible toolbox, which will provide great opportunities for researchers, policymakers, and other stakeholders, beyond the duration of the project. ATHLETE's results will help to better understand and prevent health damage from environmental exposures and their mixtures from the earliest parts of the life course onward.

15.
Environ Health Perspect ; 129(10): 107002, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34605674

RESUMEN

BACKGROUND: Transportation noise is increasingly acknowledged as a cardiovascular risk factor, but the evidence base for an association with stroke is sparse. OBJECTIVE: We aimed to investigate the association between transportation noise and stroke incidence in a large Scandinavian population. METHODS: We harmonized and pooled data from nine Scandinavian cohorts (seven Swedish, two Danish), totaling 135,951 participants. We identified residential address history and estimated road, railway, and aircraft noise for all addresses. Information on stroke incidence was acquired through linkage to national patient and mortality registries. We analyzed data using Cox proportional hazards models, including socioeconomic and lifestyle confounders, and air pollution. RESULTS: During follow-up (median=19.5y), 11,056 stroke cases were identified. Road traffic noise (Lden) was associated with risk of stroke, with a hazard ratio (HR) of 1.06 [95% confidence interval (CI): 1.03, 1.08] per 10-dB higher 5-y mean time-weighted exposure in analyses adjusted for individual- and area-level socioeconomic covariates. The association was approximately linear and persisted after adjustment for air pollution [particulate matter (PM) with an aerodynamic diameter of ≤2.5µm (PM2.5) and NO2]. Stroke was associated with moderate levels of 5-y aircraft noise exposure (40-50 vs. ≤40 dB) (HR=1.12; 95% CI: 0.99, 1.27), but not with higher exposure (≥50 dB, HR=0.94; 95% CI: 0.79, 1.11). Railway noise was not associated with stroke. DISCUSSION: In this pooled study, road traffic noise was associated with a higher risk of stroke. This finding supports road traffic noise as an important cardiovascular risk factor that should be included when estimating the burden of disease due to traffic noise. https://doi.org/10.1289/EHP8949.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ruido del Transporte , Accidente Cerebrovascular , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/análisis , Humanos , Ruido del Transporte/efectos adversos , Accidente Cerebrovascular/epidemiología
16.
Environ Epidemiol ; 5(3): e153, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34131614

RESUMEN

Nonalcoholic fatty liver disease is the most prevalent pediatric chronic liver disease. Experimental studies suggest effects of air pollution and traffic exposure on liver injury. We present the first large-scale human study to evaluate associations of prenatal and childhood air pollution and traffic exposure with liver injury. METHODS: Study population included 1,102 children from the Human Early Life Exposome project. Established liver injury biomarkers, including alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, and cytokeratin-18, were measured in serum between ages 6-10 years. Air pollutant exposures included nitrogen dioxide, particulate matter <10 µm (PM10), and <2.5 µm. Traffic measures included traffic density on nearest road, traffic load in 100-m buffer, and inverse distance to nearest road. Exposure assignments were made to residential address during pregnancy (prenatal) and residential and school addresses in year preceding follow-up (childhood). Childhood indoor air pollutant exposures were also examined. Generalized additive models were fitted adjusting for confounders. Interactions by sex and overweight/obese status were examined. RESULTS: Prenatal and childhood exposures to air pollution and traffic were not associated with child liver injury biomarkers. There was a significant interaction between prenatal ambient PM10 and overweight/obese status for alanine aminotransferase, with stronger associations among children who were overweight/obese. There was no evidence of interaction with sex. CONCLUSION: This study found no evidence for associations between prenatal or childhood air pollution or traffic exposure with liver injury biomarkers in children. Findings suggest PM10 associations maybe higher in children who are overweight/obese, consistent with the multiple-hits hypothesis for nonalcoholic fatty liver disease pathogenesis.

17.
Genome Med ; 12(1): 105, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239103

RESUMEN

BACKGROUND: DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. METHODS: We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. RESULTS: DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7). CONCLUSIONS: There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.


Asunto(s)
Índice de Masa Corporal , Metilación de ADN , Epigénesis Genética , Obesidad/genética , Parto , Adolescente , Niño , Preescolar , Islas de CpG , Estudios Transversales , Epigenoma , Femenino , Sangre Fetal , Humanos , Masculino , Obesidad Infantil/genética , Embarazo
18.
J Am Coll Cardiol ; 74(10): 1317-1328, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31488269

RESUMEN

BACKGROUND: Growing evidence exists about the fetal and environmental origins of hypertension, but mainly limited to single-exposure studies. The exposome has been proposed as a more holistic approach by studying many exposures simultaneously. OBJECTIVES: This study aims to evaluate the association between a wide range of prenatal and postnatal exposures and blood pressure (BP) in children. METHODS: Systolic and diastolic BP were measured among 1,277 children from the European HELIX (Human Early-Life Exposome) cohort aged 6 to 11 years. Prenatal (n = 89) and postnatal (n = 128) exposures include air pollution, built environment, meteorology, natural spaces, traffic, noise, chemicals, and lifestyles. Two methods adjusted for confounders were applied: an exposome-wide association study considering the exposures independently, and the deletion-substitution-addition algorithm considering all the exposures simultaneously. RESULTS: Decreases in systolic BP were observed with facility density (ß change for an interquartile-range increase in exposure: -1.7 mm Hg [95% confidence interval (CI): -2.5 to -0.8 mm Hg]), maternal concentrations of polychlorinated biphenyl 118 (-1.4 mm Hg [95% CI: -2.6 to -0.2 mm Hg]) and child concentrations of dichlorodiphenyldichloroethylene (DDE: -1.6 mm Hg [95% CI: -2.4 to -0.7 mm Hg]), hexachlorobenzene (-1.5 mm Hg [95% CI: -2.4 to -0.6 mm Hg]), and mono-benzyl phthalate (-0.7 mm Hg [95% CI: -1.3 to -0.1 mm Hg]), whereas increases in systolic BP were observed with outdoor temperature during pregnancy (1.6 mm Hg [95% CI: 0.2 to 2.9 mm Hg]), high fish intake during pregnancy (2.0 mm Hg [95% CI: 0.4 to 3.5 mm Hg]), maternal cotinine concentrations (1.2 mm Hg [95% CI: -0.3 to 2.8 mm Hg]), and child perfluorooctanoate concentrations (0.9 mm Hg [95% CI: 0.1 to 1.6 mm Hg]). Decreases in diastolic BP were observed with outdoor temperature at examination (-1.4 mm Hg [95% CI: -2.3 to -0.5 mm Hg]) and child DDE concentrations (-1.1 mm Hg [95% CI: -1.9 to -0.3 mm Hg]), whereas increases in diastolic BP were observed with maternal bisphenol-A concentrations (0.7 mm Hg [95% CI: 0.1 to 1.4 mm Hg]), high fish intake during pregnancy (1.2 mm Hg [95% CI: -0.2 to 2.7 mm Hg]), and child copper concentrations (0.9 mm Hg [95% CI: 0.3 to 1.6 mm Hg]). CONCLUSIONS: This study suggests that early-life exposure to several chemicals, as well as built environment and meteorological factors, may affect BP in children.


Asunto(s)
Exposición a Riesgos Ambientales , Contaminantes Ambientales , Hipertensión , Efectos Tardíos de la Exposición Prenatal , Presión Sanguínea/efectos de los fármacos , Determinación de la Presión Sanguínea/métodos , Determinación de la Presión Sanguínea/estadística & datos numéricos , Entorno Construido , Niño , Diclorodifenil Dicloroetileno/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/clasificación , Exposición a Riesgos Ambientales/prevención & control , Contaminantes Ambientales/efectos adversos , Contaminantes Ambientales/análisis , Europa (Continente)/epidemiología , Femenino , Salud Holística , Humanos , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/prevención & control , Insecticidas/efectos adversos , Insecticidas/análisis , Masculino , Conceptos Meteorológicos , Bifenilos Policlorados/análisis , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/diagnóstico , Efectos Tardíos de la Exposición Prenatal/epidemiología
19.
Pharmacoepidemiol Drug Saf ; 28(10): 1336-1343, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31407838

RESUMEN

PURPOSE: The purpose of the present study was to assess the agreement between self-reported use of sleep medications and tranquilizers and dispensed hypnotics and anxiolytics. METHODS: Self-reported medication use was obtained from the population-based survey Health and Environment in Oslo (HELMILO) (2009-2010) (n = 13 019). Data on dispensed hypnotics and anxiolytics were obtained from the Norwegian Prescription Database (NorPD). As measures of validity, we calculated sensitivity and specificity using both self-reports and prescription records as the reference standard. Furthermore, we calculated Cohen's kappa. Current self-reported medication use was compared with prescription data in time windows of both 100 and 200 days preceding questionnaire completion. RESULTS: The highest sensitivity was observed for current sleep medication use in the 100-day time window (sensitivity = 0.76, 95% confidence interval [CI]: 0.74, 0.79) when using prescription records as the reference standard. Sensitivity was generally lower for tranquilizers compared with sleep medications. Cohen's kappa showed the highest agreement for the 200-day time window with substantial agreement for sleep medications (kappa = 0.64; 95% CI: 0.62, 0.67) and moderate agreement for tranquilizers (kappa = 0.45; 95% CI: 0.41, 0.48). CONCLUSIONS: The present study suggests moderate to substantial agreement between self-reported use of sleep medications and tranquilizers and dispensed drugs in a general adult population. The magnitude of agreement varied according to drug category and time window. Since self-reported and registry-based use of these drug classes does not match each other accurately, limitations of each data source should be considered when such medications are applied as the exposure or outcome in epidemiologic studies.


Asunto(s)
Farmacoepidemiología/métodos , Sistema de Registros/estadística & datos numéricos , Autoinforme/estadística & datos numéricos , Fármacos Inductores del Sueño/uso terapéutico , Tranquilizantes/uso terapéutico , Adulto , Estudios Transversales , Prescripciones de Medicamentos/estadística & datos numéricos , Femenino , Humanos , Masculino , Noruega , Farmacoepidemiología/estadística & datos numéricos , Medicamentos bajo Prescripción/uso terapéutico , Sensibilidad y Especificidad
20.
Environ Res ; 174: 95-104, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31055170

RESUMEN

The human exposome affects child development and health later in life, but its personal external levels, variability, and correlations are largely unknown. We characterized the personal external exposome of pregnant women and children in eight European cities. Panel studies included 167 pregnant women and 183 children (aged 6-11 years). A personal exposure monitoring kit composed of smartphone, accelerometer, ultraviolet (UV) dosimeter, and two air pollution monitors were used to monitor physical activity (PA), fine particulate matter (PM2.5), black carbon, traffic-related noise, UV-B radiation, and natural outdoor environments (NOE). 77% of women performed the adult recommendation of ≥150 min/week of moderate to vigorous PA (MVPA), while only 3% of children achieved the childhood recommendation of ≥60 min/day MVPA. 11% of women and 17% of children were exposed to daily PM2.5 levels higher than recommended (≥25µg/m3). Mean exposure to noise ranged from Lden 51.1 dB in Kaunas to Lden 65.2 dB in Barcelona. 4% of women and 23% of children exceeded the recommended maximum of 2 Standard-Erythemal-Dose of UV-B at least once a week. 33% of women and 43% of children never reached the minimum NOE contact recommendation of ≥30 min/week. The variations in air and noise pollution exposure were dominated by between-city variability, while most of the variation observed for NOE contact and PA was between-participants. The correlations between all personal exposures ranged from very low to low (Rho < 0.30). The levels of personal external exposures in both pregnant women and children are above the health recommendations, and there is little correlation between the different exposures. The assessment of the personal external exposome is feasible but sampling requires from one day to more than one year depending on exposure due to high variability between and within cities and participants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales/estadística & datos numéricos , Adulto , Niño , Ciudades , Monitoreo del Ambiente , Europa (Continente) , Exposoma , Femenino , Humanos , Material Particulado , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...