Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cephalalgia ; 44(2): 3331024231209317, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38415635

RESUMEN

BACKGROUND: Despite advances in neuroimaging and electrophysiology, cluster headache's pathogenesis remains unclear. This review will examine clinical neurophysiology studies, including electrophysiological and functional neuroimaging, to determine if they might help us construct a neurophysiological model of cluster headache. RESULTS: Clinical, biochemical, and electrophysiological research have implicated the trigeminal-parasympathetic system in cluster headache pain generation, although the order in which these two systems are activated, which may be somewhat independent, is unknown. Electrophysiology and neuroimaging have found one or more central factors that may cause seasonal and circadian attacks. The well-known posterior hypothalamus, with its primary circadian pacemaker suprachiasmatic nucleus, the brainstem monoaminergic systems, the midbrain, with an emphasis on the dopaminergic system, especially when cluster headache is chronic, and the descending pain control systems appear to be involved. Functional connection investigations have verified electrophysiological evidence of functional changes in distant brain regions connecting to wide cerebral networks other than pain. CONCLUSION: We propose that under the impact of external time, an inherited misalignment between the primary circadian pacemaker suprachiasmatic nucleus and other secondary extra- suprachiasmatic nucleus clocks may promote disturbance of the body's internal physiological clock, lowering the threshold for bout recurrence.


Asunto(s)
Cefalalgia Histamínica , Humanos , Núcleo Supraquiasmático , Dolor , Encéfalo , Tronco Encefálico
2.
Cerebellum ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279000

RESUMEN

This study aimed to assess the responsiveness to the rehabilitation of three trunk acceleration-derived gait indexes, namely the harmonic ratio (HR), the short-term longest Lyapunov's exponent (sLLE), and the step-to-step coefficient of variation (CV), in a sample of subjects with primary degenerative cerebellar ataxia (swCA), and investigate the correlations between their improvements (∆), clinical characteristics, and spatio-temporal and kinematic gait features. The trunk acceleration patterns in the antero-posterior (AP), medio-lateral (ML), and vertical (V) directions during gait of 21 swCA were recorded using a magneto-inertial measurement unit placed at the lower back before (T0) and after (T1) a period of inpatient rehabilitation. For comparison, a sample of 21 age- and gait speed-matched healthy subjects (HSmatched) was also included. At T1, sLLE in the AP (sLLEAP) and ML (sLLEML) directions significantly improved with moderate to large effect sizes, as well as SARA scores, stride length, and pelvic rotation. sLLEML and pelvic rotation also approached the HSmatched values at T1, suggesting a normalization of the parameter. HRs and CV did not significantly modify after rehabilitation. ∆sLLEML correlated with ∆ of the gait subscore of the SARA scale (SARAGAIT) and ∆stride length and ∆sLLEAP correlated with ∆pelvic rotation and ∆SARAGAIT. The minimal clinically important differences for sLLEML and sLLEAP were ≥ 36.16% and ≥ 28.19%, respectively, as the minimal score reflects a clinical improvement in SARA scores. When using inertial measurement units, sLLEAP and sLLEML can be considered responsive outcome measures for assessing the effectiveness of rehabilitation on trunk stability during walking in swCA.

3.
Cephalalgia ; 43(10): 3331024231202240, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37795647

RESUMEN

BACKGROUND: It is unclear whether cortical hyperexcitability in chronic migraine with medication overuse headache (CM-MOH) is due to increased thalamocortical drive or aberrant cortical inhibitory mechanisms. METHODS: Somatosensory evoked potentials (SSEP) were performed by electrical stimulation of the median nerve (M), ulnar nerve (U) and simultaneous stimulation of both nerves (MU) in 27 patients with CM-MOH and, for comparison, in 23 healthy volunteers (HVs) of a comparable age distribution. We calculated the degree of cortical lateral inhibition using the formula: 100 - [MU/(M + U) × 100] and the level of thalamocortical activation by analyzing the high frequency oscillations (HFOs) embedded in parietal N20 median SSEPs. RESULTS: Compared to HV, CM-MOH patients showed higher lateral inhibition (CM-MOH 52.2% ± 15.4 vs. HV 40.4% ± 13.3; p = 0.005), which positively correlated with monthly headache days, and greater amplitude of pre-synaptic HFOs (p = 0.010) but normal post-synaptic HFOs (p = 0.122). CONCLUSION: Our findings suggest that central neuronal circuits are highly sensitized in CM-MOH patients, at both thalamocortical and cortical levels. The observed changes could be due to the combination of dysfunctional central pain control mechanisms, hypersensitivity and hyperresponsiveness directly linked to the chronic intake of acute migraine drugs.


Asunto(s)
Cefaleas Secundarias , Trastornos Migrañosos , Humanos , Sensibilización del Sistema Nervioso Central , Potenciales Evocados Somatosensoriales/fisiología , Nervio Mediano/fisiología
4.
Sensors (Basel) ; 23(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37430896

RESUMEN

The aim of this study was to assess the ability of multiscale sample entropy (MSE), refined composite multiscale entropy (RCMSE), and complexity index (CI) to characterize gait complexity through trunk acceleration patterns in subjects with Parkinson's disease (swPD) and healthy subjects, regardless of age or gait speed. The trunk acceleration patterns of 51 swPD and 50 healthy subjects (HS) were acquired using a lumbar-mounted magneto-inertial measurement unit during their walking. MSE, RCMSE, and CI were calculated on 2000 data points, using scale factors (τ) 1-6. Differences between swPD and HS were calculated at each τ, and the area under the receiver operating characteristics, optimal cutoff points, post-test probabilities, and diagnostic odds ratios were calculated. MSE, RCMSE, and CIs showed to differentiate swPD from HS. MSE in the anteroposterior direction at τ4 and τ5, and MSE in the ML direction at τ4 showed to characterize the gait disorders of swPD with the best trade-off between positive and negative posttest probabilities and correlated with the motor disability, pelvic kinematics, and stance phase. Using a time series of 2000 data points, a scale factor of 4 or 5 in the MSE procedure can yield the best trade-off in terms of post-test probabilities when compared to other scale factors for detecting gait variability and complexity in swPD.


Asunto(s)
Personas con Discapacidad , Trastornos Motores , Enfermedad de Parkinson , Humanos , Entropía , Factores de Tiempo , Aceleración , Algoritmos
5.
Front Hum Neurosci ; 17: 1146302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37144161

RESUMEN

Background: The migrainous aura has different clinical phenotypes. While the various clinical differences are well-described, little is known about their neurophysiological underpinnings. To elucidate the latter, we compared white matter fiber bundles and gray matter cortical thickness between healthy controls (HC), patients with pure visual auras (MA) and patients with complex neurological auras (MA+). Methods: 3T MRI data were collected between attacks from 20 patients with MA and 15 with MA+, and compared with those from 19 HCs. We analyzed white matter fiber bundles using tract-based spatial statistics (TBSS) of diffusion tensor imaging (DTI) and cortical thickness with surface-based morphometry of structural MRI data. Results: Tract-based spatial statistics showed no significant difference in diffusivity maps between the three subject groups. As compared to HCs, both MA and MA+ patients had significant cortical thinning in temporal, frontal, insular, postcentral, primary and associative visual areas. In the MA group, the right high-level visual-information-processing areas, including lingual gyrus, and the Rolandic operculum were thicker than in HCs, while in the MA+ group they were thinner. Discussion: These findings show that migraine with aura is associated with cortical thinning in multiple cortical areas and that the clinical heterogeneity of the aura is reflected by opposite thickness changes in high-level visual-information-processing, sensorimotor and language areas.

6.
Toxins (Basel) ; 15(1)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36668895

RESUMEN

(1) Background: OnabotulinumtoxinA (BoNT-A) is a commonly used prophylactic treatment for chronic migraine (CM). Although randomized placebo studies have shown its clinical efficacy, the mechanisms by which it exerts its therapeutic effect are still incompletely understood and debated. (2) Methods: We studied in 15 CM patients the cephalic and extracephalic nociceptive and lemniscal sensory systems using electrophysiological techniques before and 1 and 3 months after one session of pericranial BoNT-A injections according to the PREEMPT protocol. We recorded the nociceptive blink reflex (nBR), the trigemino-cervical reflex (nTCR), the pain-related cortical evoked potential (PREP), and the upper limb somatosensory evoked potential (SSEP). (3) Results: Three months after a single session of prophylactic therapy with BoNT-A in CM patients, we found (a) an increase in the homolateral and contralateral nBR AUC, (b) an enhancement of the contralateral nBR AUC habituation slope and the nTCR habituation slope, (c) a decrease in PREP N-P 1st and 2nd amplitude block, and (d) no effect on SSEPs. (4) Conclusions: Our study provides electrophysiological evidence for the ability of a single session of BoNT-A injections to exert a neuromodulatory effect at the level of trigeminal system through a reduction in input from meningeal and other trigeminovascular nociceptors. Moreover, by reducing activity in cortical pain processing areas, BoNT-A restores normal functioning of the descending pain modulation systems.


Asunto(s)
Toxinas Botulínicas Tipo A , Trastornos Migrañosos , Humanos , Toxinas Botulínicas Tipo A/uso terapéutico , Toxinas Botulínicas Tipo A/farmacología , Nocicepción , Dolor , Trastornos Migrañosos/tratamiento farmacológico , Órganos de los Sentidos
7.
Curr Pain Headache Rep ; 26(3): 267-278, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35129825

RESUMEN

PURPOSE OF REVIEW: We reviewed the literature that explored the use of central and peripheral neuromodulation techniques for chronic daily headache (CDH) treatment. RECENT FINDINGS: Although the more invasive deep brain stimulation (DBS) is effective in chronic cluster headache (CCH), it should be reserved for extremely difficult-to-treat patients. Percutaneous occipital nerve stimulation has shown similar efficacy to DBS and is less risky in both CCH and chronic migraine (CM). Non-invasive transcutaneous vagus nerve stimulation is a promising add-on treatment for CCH but not for CM. Transcutaneous external trigeminal nerve stimulation may be effective in treating CM; however, it has not yet been tested for cluster headache. Transcranial magnetic and electric stimulations have promising preventive effects against CM and CCH. Although the precise mode of action of non-invasive neuromodulation techniques remains largely unknown and there is a paucity of controlled trials, they should be preferred to more invasive techniques for treating CDH.


Asunto(s)
Cefalalgia Histamínica , Terapia por Estimulación Eléctrica , Trastornos Migrañosos , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Cefalalgia Histamínica/terapia , Terapia por Estimulación Eléctrica/métodos , Humanos , Trastornos Migrañosos/terapia , Estimulación Magnética Transcraneal/métodos , Estimulación del Nervio Vago/métodos
8.
Cephalalgia ; 42(7): 654-662, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35166155

RESUMEN

BACKGROUND: Merging of sensory information is a crucial process for adapting the behaviour to the environment in all species. It is not known if this multisensory integration might be dysfunctioning interictally in migraine without aura, where sensory stimuli of various modalities are processed abnormally when delivered separately. To investigate this question, we compared the effects of a concomitant visual stimulation on conventional low-frequency somatosensory evoked potentials and embedded high-frequency oscillations between migraine patients and healthy volunteers. METHODS: We recorded somatosensory evoked potentials in 19 healthy volunteers and in 19 interictal migraine without aura patients before, during, and 5 min after (T2) simultaneous synchronous pattern-reversal visual stimulation. At each time point, we measured amplitude and habituation of the N20-P25 low-frequency-somatosensory evoked potentials component and maximal peak-to-peak amplitude of early and late bursts of high-frequency oscillations. RESULTS: In healthy volunteers, the bimodal stimulation significantly reduced low-frequency-somatosensory evoked potentials habituation and tended to reduce early high-frequency oscillations that reflect thalamocortical activity. By contrast, in migraine without aura patients, bimodal stimulation significantly increased low-frequency-somatosensory evoked potentials habituation and early high-frequency oscillations. At T2, all visual stimulation-induced changes of somatosensory processing had vanished. CONCLUSION: These results suggest a malfunctioning multisensory integration process, which could be favoured by an abnormal excitability level of thalamo-cortical loops.


Asunto(s)
Migraña sin Aura , Potenciales Evocados Somatosensoriales/fisiología , Potenciales Evocados Visuales , Habituación Psicofisiológica/fisiología , Humanos , Estimulación Luminosa , Corteza Somatosensorial
9.
Brain Sci ; 11(4)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920175

RESUMEN

OBJECTIVES: The study aims to assess the impact of the second COVID-19 pandemic wave on migraine characteristics. METHODS: This is an observational cross-sectional study conducted on migraine patients previously interviewed during the first Italian pandemic outbreak. A second structured telephone interview was conducted between 20 November 2020 and 18 January 2021. We compared migraine characteristics among T0 (before pandemic), T1 (during the first pandemic phase), and T2 (during the second pandemic phase). RESULTS: Among the 433 patients interviewed during the first pandemic phase, 304 cases were finally considered. One hundred forty-eight patients had a control visit between March 2020 and December 2020, 120 had an in-person visit, 14 by phone, the remainder used telemedicine software provided by the hospital. Frequency of headache, number of symptomatic drugs and headache intensity worsened during T2, compared to T0 and T1, especially in episodic migraine. Headache intensity increased relating to the negative emotional impact of the pandemic. Migraine management during the pandemic did not influence the clinical outcome. CONCLUSION: The prolongation of the pandemic seems to have a negative impact on migraine evolution. The arousal and negative psychological behavior toward the COVID-19 outbreak seem to worsen migraine.

10.
Pain ; 162(3): 803-810, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33136981

RESUMEN

ABSTRACT: A common experimental neurophysiological method to study synaptic plasticity is pairing activity of somatosensory afferents and motor cortical circuits, so-called paired associative stimulation (PAS). Dysfunctional inhibitory and excitatory PAS mechanisms within the sensorimotor system were described in patients with migraine without aura (MO) between attacks. We have recently observed that the same bidirectional PAS rules also apply to the visual system. Here, we have tested whether dysfunctioning associative plasticity might characterize the visual system of patients with MO. In 14 patients with MO between attacks and in 15 healthy volunteers, we performed a previously validated visual PAS (vPAS) protocol by coupling 90 black-and-white checkerboard reversals with low-frequency transcranial magnetic stimulation pulses over the occipital cortex at 2 interstimulus intervals of -25/+25 ms around the visual-evoked potential (VEP) P1 latency. We recorded VEPs (600 sweeps) before, immediately after, and 10 min after each vPAS session. We analysed VEP N1-P1 amplitude and delayed habituation. Although vPAS-25 significantly enhanced and vPAS + 25 reduced VEP amplitude habituation in healthy volunteers, the same protocols did not significantly change VEP amplitude habituation in MO between attacks. We provide evidence for lack of habituation enhancing and habituation suppressing visual PAS mechanisms within the visual system in interictal migraine. This finding, in combination with those previously obtained studying the sensorimotor system, leads us to argue that migraine disease-related dysrhythmic thalamocortical activity prevents the occurrence of physiological bidirectional synaptic plasticity induced by vPAS.


Asunto(s)
Habituación Psicofisiológica , Trastornos Migrañosos , Potenciales Evocados Visuales , Humanos , Plasticidad Neuronal , Estimulación Luminosa , Estimulación Magnética Transcraneal
11.
Front Neurol ; 11: 597881, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240213

RESUMEN

Background: Previous studies during SARS and Ebola pandemics have shown that quarantine is associated with several negative psychological effects, such as post-traumatic stress symptoms, confusion, and anger. These conditions may affect the course of many diseases, including migraine. Although it is possible that the quarantine measures for the current COVID-19 pandemic affect migraine burden, no information is currently available on this issue. Aim: In this study, we aimed to: (1) explore the possible changes in migraine frequency, severity, and days with acute medication intake during quarantine period; (2) evaluate possible differences in migraine outcomes in consideration of lifestyle changes, emotions, pandemic diffusion, and COVID-19 infection. Methods: We interviewed patients who were included in the observational Italian Headache Registry (Registro Italiano Cefalee, RICE), retrospectively collecting information on main headache features, lifestyle factors, emotions, individual infection status, and perception of COVID-19 for 2 months before (pre-quarantine) and after the beginning of the quarantine (quarantine). Inclusion criteria were: age > 18, diagnosis of migraine without aura, migraine with aura and chronic migraine, last in-person visit more than 3 months preceding the beginning of quarantine. Results: A total of 433 migraine subjects agreed to be interviewed. We found an overall reduction in headache frequency (9.42 ± 0.43 days with headache vs. 8.28 ± 0.41) and intensity (6.57 ± 0.19 vs. 6.59 ± 0.21) during the quarantine, compared to pre-quarantine. There was a correlation between improvement and number of days of stay-at-home. When results were stratified for geographic area, we found a tendency toward worsening of headache frequency in northern Italy. Disgust regarding viral infection corresponded to a minor improvement in migraine. Conclusions: Migraine patients showed a mild improvement of migraine features, probably attributable to resilient behavior toward pandemic distress. Disgust regarding the contagion whereas potentially favoring defensive behavior, could potentially worsen migraine. The spontaneous limitation of migraine burden during quarantine could favor patient follow-up via the use of telemedicine visits, reliable diaries, and frequent remote contacts.

12.
J Headache Pain ; 21(1): 34, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299338

RESUMEN

BACKGROUND: Short-latency afferent inhibition (SAI) consists of motor cortex inhibition induced by sensory afferents and depends on the excitatory effect of cholinergic thalamocortical projections on inhibitory GABAergic cortical networks. Given the electrophysiological evidence for thalamo-cortical dysrhythmia in migraine, we studied SAI in migraineurs during and between attacks and searched for correlations with somatosensory habituation, thalamocortical activation, and clinical features. METHODS: SAI was obtained by conditioning the transcranial magnetic stimulation-induced motor evoked potential (MEP) with an electric stimulus on the median nerve at the wrist with random stimulus intervals corresponding to the latency of individual somatosensory evoked potentials (SSEP) N20 plus 2, 4, 6, or 8 ms. We recruited 30 migraine without aura patients, 16 between (MO), 14 during an attack (MI), and 16 healthy volunteers (HV). We calculated the slope of the linear regression between the unconditioned MEP amplitude and the 4-conditioned MEPs as a measure of SAI. We also measured SSEP amplitude habituation, and high-frequency oscillations (HFO) as an index of thalamo-cortical activation. RESULTS: Compared to HV, SAI, SSEP habituation and early SSEP HFOs were significantly reduced in MO patients between attacks, but enhanced during an attack. There was a positive correlation between degree of SAI and amplitude of early HFOs in HV, but not in MO or MI. CONCLUSIONS: The migraine cycle-dependent variations of SAI and SSEP HFOs are further evidence that facilitatory thalamocortical activation (of GABAergic networks in the motor cortex for SAI), likely to be cholinergic, is reduced in migraine between attacks, but increased ictally.


Asunto(s)
Potenciales Evocados Motores/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Trastornos Migrañosos/fisiopatología , Corteza Motora/fisiopatología , Inhibición Neural/fisiología , Tálamo/fisiopatología , Adolescente , Adulto , Femenino , Humanos , Masculino , Nervio Mediano/fisiopatología , Estimulación Magnética Transcraneal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...