Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Mater Au ; 3(3): 265-272, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38089131

RESUMEN

Burn injury represents a major global public healthcare problem and has a significant health-economics impact. In this study, we report on a 3D printed poly(lactic-co-glycolic acid) (PLGA) dermal scaffold containing bioactive PLGA for burn wound healing. Bioactive brush copolymers containing pendant side chains of PLGA and PEGylated Arg-Gly-Asp tripeptide (RGD) or hyaluronic acid (HA) were synthesized by ring-opening metathesis polymerization (ROMP). These copolymers exhibited good thermal stability for material processing using melt-extrusion-based methods. The copolymers were blended with commercial PLGA, extruded into filaments and 3D printed using fused filament fabrication (FFF) methods with incorporated porosities. The 3D printed scaffolds demonstrated good biocompatibility in in vitro cell assays and in vivo murine models. Porcine study based on partial thickness burn wound model showed that these PLGA scaffolds facilitated re-epithelization with reduced inflammation as compared to the clinical gold standard for second-degree burn wound treatment, Biobrane. The bioactive PLGA scaffolds presented herein are beneficial in wound healing and have therapeutic potential in burn wounds treatment.

2.
ACS Appl Bio Mater ; 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36101969

RESUMEN

We report the modular synthesis of bioactive brush-type polycaprolactone-peptide and polylactide-peptide copolymers for applications in bone tissue engineering. The brush copolymers containing pendant side chains of polycaprolactone (PCL) or polylactide (PLA) and PEGylated peptides, including linear Arg-Gly-Asp and collagen-like peptide (Gly-Pro-Hyp)3, were synthesized by ring-opening metathesis polymerization with high conversions and low dispersities (<1.5). These PCL-peptide and PLA-peptide copolymers exhibited good thermal stability for material processing using melt-extrusion-based methods. The copolymers were blended with commercial PCL or PLA, extruded into filaments, and 3D printed using fused filament fabrication methods. These bioactive PCL and PLA materials promoted osteogenic differentiation in vitro and showed good biocompatibility in in vivo murine model study. The promising results presented herein will serve as a useful guide for the design and functionalization of PCL or PLA materials for use in bone tissue engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...