Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Planta ; 259(6): 152, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735012

RESUMEN

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Asunto(s)
Acetatos , Artemisia annua , Artemisininas , Ciclopentanos , Metiltransferasas , Oxilipinas , Filogenia , Artemisia annua/genética , Artemisia annua/enzimología , Artemisia annua/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Artemisininas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Acetatos/farmacología , Acetatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo
2.
Gene ; 904: 148213, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38281672

RESUMEN

The leaves of Artemisia annua contain GSTs (Glandular secretory trichomes) that can secrete and store artemisinin, the drug most effective for treating uncomplicated malaria. Therefore, increasing the density of GSTs in A. annua is an efficient way to enhance artemisinin content. However, our understanding of how GSTs develop still needs to be improved. Here, we isolated an A. annua homolog of AtGL3 (GLABRA3), known as AaGL3-like, that positively regulates trichome density in A. annua. AaGL3-like is nuclear-localized and transcriptionally active. It is least expressed in roots and most prominently in aerial components like leaves, stems, and inflorescence. Under JA and GA hormonal treatments, AaGL3-like expression is significantly increased. In transgenic over-expression AaGL3-like lines, trichome developmental genes such as AaHD1 and AaGSW2 showed much increased expression. The AaGL3RNAi line exhibited considerably lower levels of AaHD1 and AaGSW2 transcripts. As a result, the AaGL3-RNAi lines showed reduced levels of artemisinin content and trichome density compared to wild-type and overexpression lines. Additionally, we have found that when co-expressed with AaJAZ8, the induction of trichome developmental genes was reduced as compared to individual OEAaGL3-like lines. Further, AaJAZ8 directly binds to AaGL3-like in the Y2H assay. These findings suggest that AaGL3-like is a jasmonate-induced bHLH transcription factor that drastically increases the final accumulation of artemisinin content by regulating trichome density in A. annua.


Asunto(s)
Artemisia annua , Artemisininas , Ciclopentanos , Oxilipinas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tricomas/genética , Tricomas/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/farmacología , Proteínas de Plantas/metabolismo
3.
Gene ; 887: 147694, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37574116

RESUMEN

Anthocyanins are a class of flavonoids having antioxidant and anti-inflammatory properties. They defend plants against various biotic and abiotic stresses and are synthesized by a specific branch of the flavonoid biosynthetic pathway. Different regulatory mechanisms have been found to regulate anthocyanin biosynthesis in plants. These include the MYB-bHLH-WDR (MBW) MBW trimeric complex consisting of bHLH, R2R3 MYB, and WD40 transcription factors. Epigenetic and Post-translational modification (PTMs) of MBW complex and various other transcription factors play important role in both plant developmental processes and modulating plant response to different environmental conditions. Recent studies have broadened our understanding of the role of various epigenetic (methylation and histone modification) and PTMs (phosphorylation, acetylation, ubiquitylation, sumoylation, etc.) mechanisms in regulating anthocyanin biosynthesis in plants. In this review, we are updating various epigenetic and PTMs modifications of various transcription factors which regulate anthocyanin biosynthesis in various plants. In addition to this, we have also briefly discussed in which direction future research on epigenetic and PTMs can be taken so that we can engineer medicinal plants for enhanced secondary metabolite biosynthesis.


Asunto(s)
Antocianinas , Arabidopsis , Arabidopsis/metabolismo , Factores de Transcripción/genética , Plantas/genética , Plantas/metabolismo , Flavonoides/metabolismo , Procesamiento Proteico-Postraduccional , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Physiol Plant ; 175(1): e13849, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36636815

RESUMEN

The wonder drug artemisinin, a sesquiterpene lactone endoperoxide from Artemisia annua is the million-dollar molecule required to curb the deadliest disease, Malaria. One of the major challenges even today is to increase the concentration of artemisinin within plants. The transcription factors are important regulators of plant secondary metabolites and have the potential to regulate key steps or the whole biosynthetic pathway. In this study, we have identified and characterised two bHLH transcription factors (Aa6119 and Aa7162) from A. annua. Both the transcription factors turned out to be transcriptionally active and nuclear-localised typical bHLH proteins. In our study, we found that Aa6119 specifically binds to the E-box element present on the promoter of artemisinin biosynthetic gene, AMORPHA-4,11-DIENE SYNTHASE (ADS). The protein-DNA interaction confirmed by Yeast one-hybrid assay was specific as Aa6119 was unable to bind to the mutated E-boxes of ADS. Further, Aa6119 interacted physically with Aa7162, which was confirmed in vitro by Yeast two-hybrid assay and in vivo by Bimolecular Fluorescent complementation assay. Our quantitative expression studies have confirmed that Aa6119 and Aa7162 act synergistically in the regulation of artemisinin biosynthetic and trichome developmental genes. The higher accumulation of artemisinin content in the transient co-transformed transgenic plants than in the individual over-expression transgenic plants has further validated that Aa6119 and Aa7162 act positively and synergistically to regulate artemisinin accumulation.


Asunto(s)
Artemisia annua , Artemisininas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Artemisia annua/genética , Artemisia annua/metabolismo , Vías Biosintéticas/genética , Artemisininas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo
5.
Protoplasma ; 256(2): 313-329, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30311054

RESUMEN

Plant leaves offer an exclusive windowpane to uncover the changes in organs, tissues, and cells as they advance towards the process of senescence and death. Drought-induced leaf senescence is an intricate process with remarkably coordinated phases of onset, progression, and completion implicated in an extensive reprogramming of gene expression. Advancing leaf senescence remobilizes nutrients to younger leaves thereby contributing to plant fitness. However, numerous mysteries remain unraveled concerning leaf senescence. We are not still able to correlate leaf senescence and drought stress to endogenous and exogenous environments. Furthermore, we need to decipher how molecular mechanisms of the leaf senescence and levels of drought tolerance are advanced and how is the involvement of SAGs in drought tolerance and plant fitness. This review provides the perspicacity indispensable for facilitating our coordinated point of view pertaining to leaf senescence together with inferences on progression of whole plant aging. The main segments discussed in the review include coordination between hormonal signaling, leaf senescence, drought tolerance, and crosstalk between hormones in leaf senescence regulation.


Asunto(s)
Reguladores del Crecimiento de las Plantas/química , Hojas de la Planta/química , Factores de Transcripción/química , Sequías , Transducción de Señal
6.
Int J Biol Macromol ; 113: 719-728, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29486265

RESUMEN

The present study reveals the syntheses of hydroxypropylcellulose­(HPC) and hydroxyethylcellulose­(HEC) based macromolecular prodrugs (MPDs) of ciprofloxacin (CIP) using homogeneous reaction methodology. Covalently loaded drug content (DC) of each prodrug was quantified using UV-Vis spectrophotometry to determine degree of substitution (DS). HPC-ciprofloxacin (HPC-CIP) conjugates showed DS of CIP in the range 0.87-1.15 whereas HEC-ciprofloxacin (HEC-CIP) conjugates showed DS range 0.51-0.75. Transmission electron microscopy revealed that HPC-CIP conjugate 2 and HEC-CIP conjugate 6 self-assembled into nanoparticles of 150-300 and 180-250nm, respectively. Size exclusion chromatography revealed HPC-CIP conjugate 2 and HEC-CIP conjugate 6 as monodisperse systems. In vitro drug release studies indicated 15 and 43% CIP release from HPC-CIP conjugate 2 after 6h in simulated gastric and simulated intestinal fluids (SGF and SIF), respectively. HEC-CIP conjugate 6 showed 16% and 46% release after 6h in SGF and SIF, respectively. HPC-CIP conjugate 2 and HEC-CIP conjugate 6 exhibited half-lives of 10.87 and 11.71h, respectively with area under the curve values of 164 and 175hµgmL-1, respectively, indicating enhanced bioavailability and improved pharmacokinetic profiles in animal model. Equal antibacterial activities to that of unmodified CIP confirmed their competitive efficacies. Cytotoxicity studies supported their non-toxic nature and biocompatibility.


Asunto(s)
Celulosa/análogos & derivados , Ciprofloxacina/metabolismo , Diseño de Fármacos , Profármacos/química , Profármacos/farmacocinética , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Disponibilidad Biológica , Línea Celular , Supervivencia Celular/efectos de los fármacos , Celulosa/química , Ciprofloxacina/química , Liberación de Fármacos , Cinética , Masculino , Ratones , Profármacos/metabolismo , Profármacos/farmacología , Conejos , Distribución Tisular
7.
Carbohydr Polym ; 136: 1297-306, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26572474

RESUMEN

Macromolecular prodrugs (MPDs) of moxifloxacin were fabricated based on hydroxypropylcellulose (HPC) and hydroxyethylcellulose (HEC). UV/Vis spectrophotometry was employed to determine covalently loaded drug content (DC) of each conjugate. The degree of substitution (DS) of moxifloxacin attained ranged from 0.27 to 0.38 (HPC) and 0.19 to 0.26 (HEC) per anhydroglucose unit (AGU), respectively. Transmission electron microscopic analyses showed that HPC-moxifloxacin conjugates self-assembled into nanowires of ∼ 30 nm diameters while HEC-moxifloxacin conjugates self-assembled into nanoparticles of 150-350 nm. In vitro drug release studies revealed that 15 and 49% moxifloxacin release occurred from the HPC-moxifloxacin conjugate after 6h at pH 1.2 and 7.4, respectively. Similarly, moxifloxacin release from HEC-moxifloxacin conjugates was 15 and 39% at pH 1.2 and 7.4, respectively. Bioavailability and pharmacokinetic studies in rabbits showed that both HPC- and HEC-conjugates exhibited significantly enhanced moxifloxacin plasma half-life, over 24h, confirming sustained release and enhanced bioavailability (AUC 2.0-2.1 times higher) of moxifloxacin.


Asunto(s)
Celulosa/análogos & derivados , Fluoroquinolonas/química , Fluoroquinolonas/farmacocinética , Animales , Disponibilidad Biológica , Celulosa/química , Preparaciones de Acción Retardada , Liberación de Fármacos , Fluoroquinolonas/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Masculino , Moxifloxacino , Profármacos/síntesis química , Profármacos/química , Profármacos/farmacocinética , Conejos
8.
J Plant Physiol ; 189: 114-25, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26595090

RESUMEN

Apocarotenoids modulate vital physiological and developmental processes in plants. These molecules are formed by the cleavage of carotenoids, a reaction catalyzed by a family of enzymes called carotenoid cleavage dioxygenases (CCDs). Apocarotenoids like ß-ionone and ß-cyclocitral have been reported to act as stress signal molecules during high light stress in many plant species. In Crocus sativus, these two apocarotenoids are formed by enzymatic cleavage of ß-carotene at 9, 10 and 7, 8 bonds by CsCCD4 enzymes. In the present study three isoforms of CsCCD4 were subjected to molecular modeling and docking analysis to determine their substrate specificity and all the three isoforms displayed high substrate specificity for ß-carotene. Further, expression of these three CsCCD4 isoforms investigated in response to various stresses revealed that CsCCD4a and CsCCD4b exhibit enhanced expression in response to dehydration, salt and methylviologen, providing a clue towards their role in mediating plant defense response. This was confirmed by overexpressing CsCCD4b in Arabidopsis. The transgenic plants developed longer roots and possessed higher number of lateral roots. Further, overexpression of CsCCD4b imparted enhanced tolerance to salt, dehydration and oxidative stresses as was evidenced by higher survival rate, increased relative root length and biomass in transgenic plants as compared to wild type. Transgenic plants also displayed higher activity and expression of reactive oxygen species (ROS) metabolizing enzymes. This indicates that ß-ionone and ß-cyclocitral which are enzymatic products of CsCCD4b may act as stress signals and mediate reprogramming of stress responsive genes which ultimately leads to plant defense.


Asunto(s)
Arabidopsis/fisiología , Carotenoides/metabolismo , Crocus/enzimología , Dioxigenasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Aldehídos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Secuencia de Bases , Crocus/genética , Deshidratación , Dioxigenasas/genética , Diterpenos/metabolismo , Modelos Estructurales , Simulación del Acoplamiento Molecular , Norisoprenoides/metabolismo , Estrés Oxidativo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN , Cloruro de Sodio/farmacología , beta Caroteno/metabolismo
9.
BMC Genomics ; 16: 698, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26370545

RESUMEN

BACKGROUND: Crocus sativus stigmas form rich source of apocarotenoids like crocin, picrocrocin and saffranal which besides imparting color, flavour and aroma to saffron spice also have tremendous pharmacological properties. Inspite of their importance, the biosynthetic pathway of Crocus apocarotenoids is not fully elucidated. Moreover, the mechanism of their stigma specific accumulation remains unknown. Therefore, deep transcriptome sequencing of Crocus stigma and rest of the flower tissue was done to identify the genes and transcriptional regulators involved in the biosynthesis of these compounds. RESULTS: Transcriptome of stigma and rest of the flower tissue was sequenced using Illumina Genome Analyzer IIx platform which generated 64,604,402 flower and 51,350,714 stigma reads. Sequences were assembled de novo using trinity resulting in 64,438 transcripts which were classified into 32,204 unigenes comprising of 9853 clusters and 22,351 singletons. A comprehensive functional annotation and gene ontology (GO) analysis was carried out. 58.5 % of the transcripts showed similarity to sequences present in public databases while rest could be specific to Crocus. 5789 transcripts showed similarity to transcription factors representing 76 families out of which Myb family was most abundant. Many genes involved in carotenoid/apocarotenoid pathway were identified for the first time in this study which includes zeta-carotene isomerase and desaturase, carotenoid isomerase and lycopene epsilon-cyclase. GO analysis showed that the predominant classes in biological process category include metabolic process followed by cellular process and primary metabolic process. KEGG mapping analysis indicated that pathways involved in ribosome, carbon and starch and sucrose metabolism were highly represented. Differential expression analysis indicated that key carotenoid/apocarotenoid pathway genes including phytoene synthase, phytoene desaturase and carotenoid cleavage dioxygenase 2 are enriched in stigma thereby providing molecular proof for stigma to be the site of apocarotenoid biosynthesis. CONCLUSIONS: This data would provide a rich source for understanding the carotenoid/apocarotenoid metabolism in Crocus. The database would also help in investigating many questions related to saffron biology including flower development.


Asunto(s)
Carotenoides/biosíntesis , Crocus/genética , Crocus/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Análisis por Conglomerados , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Filogenia , Reproducibilidad de los Resultados , Factores de Transcripción/genética
10.
Plant Cell ; 26(3): 1036-52, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24610722

RESUMEN

Arabidopsis thaliana CALMODULIN7 (CAM7), a unique member of the calmodulin gene family, plays a crucial role as a transcriptional regulator in seedling development. The elongated HYPOCOTYL5 (HY5) bZIP protein, an integrator of multiple signaling pathways, also plays an important role in photomorphogenic growth and light-regulated gene expression. CAM7 acts synergistically with HY5 to promote photomorphogenesis at various wavelengths of light. Although the genetic relationships between CAM7 and HY5 in light-mediated seedling development have been demonstrated, the molecular connectivity between CAM7 and HY5 is unknown. Furthermore, whereas HY5-mediated gene regulation has been fairly well investigated, the transcriptional regulation of HY5 is largely unknown. Here, we report that HY5 expression is regulated by HY5 and CAM7 at various wavelengths of light and also at various stages of development. In vitro and in vivo DNA-protein interaction studies suggest that HY5 and CAM7 bind to closely located T/G- and E-box cis-acting elements present in the HY5 promoter, respectively. Furthermore, CAM7 and HY5 physically interact and regulate the expression of HY5 in a concerted manner. Taken together, these results demonstrate that CAM7 and HY5 directly interact with the HY5 promoter to mediate the transcriptional activity of HY5 during Arabidopsis seedling development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Calmodulina/fisiología , Luz , Proteínas Nucleares/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Calmodulina/metabolismo , Electroforesis en Gel de Poliacrilamida , Morfogénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica
11.
Plant Signal Behav ; 9(9): e29763, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25763709

RESUMEN

CAM7, a member of CaM family in Arabidopsis, acts as a transcriptional regulator and enhances photomorphogenic growth and light regulated gene expression under various light conditions. HY5, a bZIP transcription factor, promotes photomorphogenesis at multiple wavelengths of light including far red, red, and blue light. Very recently, it has been shown that CAM7 and HY5 directly interact with the HY5 promoter to regulate the transcriptional activity of HY5 during Arabidopsis seedling development. In this study, we have investigated the root phenotype of cam7 hy5 double mutants and shown that CAM7 and HY5 genetically interact to control the root growth. We have further shown an interdependent function of HY5 and CAM7 in abscisic acid (ABA) responsiveness.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Calmodulina/genética , Proteínas Nucleares/genética , Ácido Abscísico/farmacología , Arabidopsis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/biosíntesis , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transducción de Señal/genética
12.
J Biol Chem ; 287(31): 25995-6009, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22692212

RESUMEN

Arabidopsis bZIP transcription factor, GBF1, acts as a differential regulator of cryptochrome-mediated blue light signaling. Whereas the bZIP proteins, HY5 (elongated hypocotyl 5) and HYH (HY5 homologue), are degraded by COP1-mediated proteasomal pathways, GBF1 is degraded by a proteasomal pathway independent of COP1. In this study, we have investigated the functional interrelations of GBF1 with HY5 and HYH in Arabidopsis seedling development. The genetic studies using double and triple mutants reveal that GBF1 largely acts antagonistically with HY5 and HYH in Arabidopsis seedling development. Further, GBF1 and HY5 play more important roles than HYH in blue light-mediated photomorphogenic growth. This study reveals that GBF1 is able to form a G-box-binding heterodimer with HY5 but not with HYH. The in vitro and in vivo studies demonstrate that GBF1 co-localizes with HY5 or HYH in the nucleus and physically interacts with both of the proteins. The protein-protein interaction studies further reveal that the bZIP domain of GBF1 is essential and sufficient for the interaction with HY5 or HYH. Taken together, these data demonstrate the functional interrelations of GBF1 with HY5 and HYH in Arabidopsis seedling development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Portadoras/metabolismo , Hipocótilo/crecimiento & desarrollo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Portadoras/genética , Proteínas de Unión al ADN , Epistasis Genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/genética , Hipocótilo/metabolismo , Luz , Mutación , Proteínas Nucleares/genética , Cebollas/citología , Cebollas/metabolismo , Fenotipo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA