Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(8): 9003-9012, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434887

RESUMEN

The trends in food packaging technologies are shifting toward utilizing natural and environmentally friendly materials prepared from biopolymers such as kappa carrageenan to replace synthetic polymers. In the current study, varying amounts (0.1, 0.2, and 0.3%) of grapefruit essential oil (GFO) were incorporated in kappa carrageenan-based edible films to improve their physicochemical properties. The developed film samples were characterized for their barrier, mechanical, morphological, optical, thermal, antioxidant, and biodegradable properties. The results obtained showed that the tensile strength of the carrageenan films enhanced significantly from 65.20 ± 4.71 to 98.21 ± 6.35 MPa with the incorporation of GFO in a concentration-dependent manner. FTIR and SEM analysis confirmed the intermolecular bonding between carrageenan and GFO, resulting in the formation of compact films. Incorporating GFO significantly enhanced the thermal resistance of oil-loaded films, as confirmed by TGA, DSC, and DTG analysis. The addition of GFO led to a substantial increase in the radical scavenging activity of the films, as evidenced by the DPPH and ABTS assays. Furthermore, the developed films were biodegradable in soil and seawater environments, indicating their potential as a sustainable alternative to traditional plastics. Findings demonstrated that GFO can be used as a natural antioxidant agent in kappa carrageenan-based films for potential applications in food packaging.

2.
J Food Sci ; 88(9): 3839-3848, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37530623

RESUMEN

Probiotics viability and stability is a core challenge for the food processing industry. To prolong the viability of probiotics (Lactobacillus acidophilus), gelatin (GE)-chitosan (CH) polyelectrolytes-coated nanoliposomes were developed and characterized. The average particle size of the nanoliposomes was in the range of 131.7-431.6 nm. The mean zeta potential value of the nanoliposomes differed significantly from -42.2 to -9.1 mV. Scanning electron micrographs indicated that the nanoliposomes were well distributed and had a spherical shape with a smooth surface. The Fourier transform infrared spectra revealed that the GE-CH polyelectrolyte coating has been effectively applied on the surface of nanoliposomes and L. acidophilus cells were successfully encapsulated in the lipid-based nanocarriers. X-ray diffraction results indicated that nanoliposomes are semicrystalline and GE-CH polyelectrolyte coating had an influence on the crystalline nature of nanoliposomes. Moreover, the coating of L. acidophilus-loaded nanoliposomes with GE-CH polyelectrolytes significantly improved its viability when exposed to simulated gastrointestinal environments. The findings of the current study indicated that polyelectrolyte-coated nanoliposomes could be used as an effective carrier for the delivery of probiotics and their application to food matrix for manufacturing functional foods.


Asunto(s)
Quitosano , Probióticos , Polielectrolitos , Probióticos/química , Tracto Gastrointestinal/microbiología , Lactobacillus acidophilus/química , Tamaño de la Partícula , Quitosano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...