Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 6(2)2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28174168

RESUMEN

BACKGROUND: Cardiomyocyte-specific transgenic mice overexpressing S100A6, a member of the family of EF-hand calcium-binding proteins, develop less cardiac hypertrophy, interstitial fibrosis, and myocyte apoptosis after permanent coronary ligation, findings that support S100A6 as a potential therapeutic target after acute myocardial infarction. Our purpose was to investigate S100A6 gene therapy for acute myocardial ischemia-reperfusion. METHODS AND RESULTS: We first performed in vitro studies to examine the effects of S100A6 overexpression and knockdown in rat neonatal cardiomyocytes. S100A6 overexpression improved calcium transients and protected against apoptosis induced by hypoxia-reoxygenation via enhanced calcineurin activity, whereas knockdown of S100A6 had detrimental effects. For in vivo studies, human S100A6 plasmid or empty plasmid was delivered to the left ventricular myocardium by ultrasound-targeted microbubble destruction in Fischer-344 rats 2 days prior to a 30-minute ligation of the left anterior descending coronary artery followed by reperfusion. Control animals received no therapy. Pretreatment with S100A6 gene therapy yielded a survival advantage compared to empty-plasmid and nontreated controls. S100A6-pretreated animals had reduced infarct size and improved left ventricular systolic function, with less myocyte apoptosis, attenuated cardiac hypertrophy, and less cardiac fibrosis. CONCLUSIONS: S100A6 overexpression by ultrasound-targeted microbubble destruction helps ameliorate myocardial ischemia-reperfusion, resulting in lower mortality and improved left ventricular systolic function post-ischemia-reperfusion via attenuation of apoptosis, reduction in cardiac hypertrophy, and reduced infarct size. Our results indicate that S100A6 is a potential therapeutic target for acute myocardial infarction.


Asunto(s)
Apoptosis , Proteínas de Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica , Infarto del Miocardio/genética , Daño por Reperfusión Miocárdica/complicaciones , Miocitos Cardíacos/metabolismo , ARN/genética , Proteína A6 de Unión a Calcio de la Familia S100/genética , Animales , Animales Recién Nacidos , Western Blotting , Proteínas de Ciclo Celular/biosíntesis , Modelos Animales de Enfermedad , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Endogámicas F344 , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína A6 de Unión a Calcio de la Familia S100/biosíntesis , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 113(44): 12592-12597, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27742792

RESUMEN

Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Transducción de Señal , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Modelos Animales de Enfermedad , Humanos , Ratones Transgénicos , Mutación , Miocardio/metabolismo , Miocardio/patología , Fosfoproteínas/genética , Fosforilación , Proteoma/genética
3.
Nat Commun ; 6: 8391, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26403541

RESUMEN

Membrane proteins are crucial to heart function and development. Here we combine cationic silica-bead coating with shotgun proteomics to enrich for and identify plasma membrane-associated proteins from primary mouse neonatal and human fetal ventricular cardiomyocytes. We identify Tmem65 as a cardiac-enriched, intercalated disc protein that increases during development in both mouse and human hearts. Functional analysis of Tmem65 both in vitro using lentiviral shRNA-mediated knockdown in mouse cardiomyocytes and in vivo using morpholino-based knockdown in zebrafish show marked alterations in gap junction function and cardiac morphology. Molecular analyses suggest that Tmem65 interaction with connexin 43 (Cx43) is required for correct localization of Cx43 to the intercalated disc, since Tmem65 deletion results in marked internalization of Cx43, a shorter half-life through increased degradation, and loss of Cx43 function. Our data demonstrate that the membrane protein Tmem65 is an intercalated disc protein that interacts with and functionally regulates ventricular Cx43.


Asunto(s)
Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Ventrículos Cardíacos/metabolismo , Proteínas de la Membrana/genética , Miocitos Cardíacos/metabolismo , Proteínas de Pez Cebra/genética , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Técnica del Anticuerpo Fluorescente , Uniones Comunicantes/ultraestructura , Técnicas de Silenciamiento del Gen , Sistema de Conducción Cardíaco/fisiología , Técnicas In Vitro , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Electrónica , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/ultraestructura , Proteómica , Dióxido de Silicio , Pez Cebra , Proteínas de Pez Cebra/metabolismo
4.
J Am Heart Assoc ; 3(5): e001018, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25332179

RESUMEN

BACKGROUND: Endoplasmic reticulum (ER) resident protein 44 (ERp44) is a member of the protein disulfide isomerase family, is induced during ER stress, and may be involved in regulating Ca(2+) homeostasis. However, the role of ERp44 in cardiac development and function is unknown. The aim of this study was to investigate the role of ERp44 in cardiac development and function in mice, zebrafish, and embryonic stem cell (ESC)-derived cardiomyocytes to determine the underlying role of ERp44. METHODS AND RESULTS: We generated and characterized ERp44(-/-) mice, ERp44 morphant zebrafish embryos, and ERp44(-/-) ESC-derived cardiomyocytes. Deletion of ERp44 in mouse and zebrafish caused significant embryonic lethality, abnormal heart development, altered Ca(2+) dynamics, reactive oxygen species generation, activated ER stress gene profiles, and apoptotic cell death. We also determined the cardiac phenotype in pressure overloaded, aortic-banded ERp44(+/-) mice: enhanced ER stress activation and increased mortality, as well as diastolic cardiac dysfunction with a significantly lower fractional shortening. Confocal and LacZ histochemical staining showed a significant transmural gradient for ERp44 in the adult heart, in which high expression of ERp44 was observed in the outer subepicardial region of the myocardium. CONCLUSIONS: ERp44 plays a critical role in embryonic heart development and is crucial in regulating cardiac cell Ca(2+) signaling, ER stress, ROS-induced oxidative stress, and activation of the intrinsic mitochondrial apoptosis pathway.


Asunto(s)
Células Madre Embrionarias/metabolismo , Retículo Endoplásmico/metabolismo , Cardiopatías Congénitas/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Apoptosis , Señalización del Calcio , Células Cultivadas , Células Madre Embrionarias/patología , Retículo Endoplásmico/patología , Estrés del Retículo Endoplásmico , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/fisiopatología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Chaperonas Moleculares/genética , Morfogénesis , Contracción Miocárdica , Miocitos Cardíacos/patología , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Pez Cebra/embriología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
5.
J Cell Physiol ; 229(3): 374-83, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24037923

RESUMEN

Calnexin (CNX) is an endoplasmic reticulum (ER) quality control chaperone that has been implicated in ER stress. ER stress is a prominent pathological feature of various pathologic conditions, including cardiovascular diseases. However, the role of CNX and ER stress has not been studied in the heart. In the present study, we aimed to characterize the role of CNX in cardiomyocyte physiology with respect to ER stress, apoptosis, and cardiomyocyte Ca(2+) cycling. We demonstrated significantly decreased CNX mRNA and protein levels by LentiVector mediated transduction of targeting shRNAs. CNX silenced cardiomyocytes exhibited ER stress as evidenced by increased GRP78 and ATF6 protein levels, increased levels of spliced XBP1 mRNA, ASK-1, ERO1a, and CHOP mRNA levels. CNX silencing also led to significant activation of caspases-3 and -9. This activation of caspases was associated with hallmark morphological features of apoptosis including loss of sarcomeric organization and nuclear integrity. Ca(2+) imaging in live cells showed that CNX silencing resulted in Ca(2+) transients with significantly larger amplitudes but decreased frequency and Ca(2+) uptake rates in the basal state. Interestingly, 5 mM caffeine stimulated Ca(2+) transients were similar between control and CNX silenced cardiomyocytes. Finally, we demonstrated that CNX silencing induced the expression of the L-type voltage dependent calcium channel (CAV1.2) but reduced the expression of the sarcoplasmic reticulum ATPase (SERCA2a). In conclusion, this is the first study to demonstrate CNX has a specific role in cardiomyocyte viability and Ca(2+) cycling through its effects on ER stress, apoptosis and Ca(2+) channel expression.


Asunto(s)
Apoptosis , Señalización del Calcio , Calnexina/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Miocitos Cardíacos/metabolismo , Interferencia de ARN , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Cafeína/farmacología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Calnexina/genética , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Supervivencia Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Vectores Genéticos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Lentivirus/genética , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Oxidorreductasas , ARN Mensajero/metabolismo , Factores de Transcripción del Factor Regulador X , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factores de Tiempo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética , Transfección , Proteína 1 de Unión a la X-Box
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...