Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(6): eadk5489, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335287

RESUMEN

During the Neoproterozoic and Paleoproterozoic eras, geological evidence points to several "Snowball Earth" episodes when most of Earth's surface was covered in ice. These global-scale glaciations represent the most marked climate changes in Earth's history. We show that the impact winter following an asteroid impact comparable in size to the Chicxulub impact could have led to a runaway ice-albedo feedback and global glaciation. Using a state-of-the-art atmosphere-ocean climate model, we simulate the climate response following an impact for preindustrial, Last Glacial Maximum (LGM), Cretaceous-like, and Neoproterozoic climates. While warm ocean temperatures in the preindustrial and Cretaceous-like climates prevent Snowball initiation, the colder oceans of the LGM and cold Neoproterozoic climate scenarios rapidly form sea ice and demonstrate high sensitivity to the initial condition of the ocean. Given suggestions of a cold pre-Snowball climate, we argue the initiation of Snowball Earth by a large impact is a robust possible mechanism, as previously suggested by others, and conclude by discussing geologic tests.

2.
Geophys Res Lett ; 49(10): e2021GL095748, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35864818

RESUMEN

The influence of atmospheric composition on the climates of present-day and early Earth has been studied extensively, but the role of ocean composition has received less attention. We use the ROCKE-3D ocean-atmosphere general circulation model to investigate the response of Earth's present-day and Archean climate system to low versus high ocean salinity. We find that saltier oceans yield warmer climates in large part due to changes in ocean dynamics. Increasing ocean salinity from 20 to 50 g/kg results in a 71% reduction in sea ice cover in our present-day Earth scenario. This same salinity change also halves the pCO2 threshold at which Snowball glaciation occurs in our Archean scenarios. In combination with higher levels of greenhouse gases such as CO2 and CH4, a saltier ocean may allow for a warm Archean Earth with only seasonal ice at the poles despite receiving ∼20% less energy from the Sun.

3.
J Adv Model Earth Syst ; 13(11): e2021MS002505, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34820055

RESUMEN

The high computational cost of Global Climate Models (GCMs) is a problem that limits their use in many areas. Recently an inverse climate modeling (InvCM) method, which fixes the global mean sea surface temperature (SST) and evolves the C O 2 mixing ratio to equilibrate climate, has been implemented in a cloud-resolving model. In this article, we apply InvCM to ExoCAM GCM aquaplanet simulations, allowing the SST pattern to evolve while maintaining a fixed global-mean SST. We find that InvCM produces the same climate as normal slab-ocean simulations but converges an order of magnitude faster. We then use InvCM to calculate the equilibrium C O 2 for SSTs ranging from 290 to 340 K at 1 K intervals and reproduce the large increase in climate sensitivity at an SST of about 315 K at much higher temperature resolution. The speedup provided by InvCM could be used to equilibrate GCMs at higher spatial resolution or to perform broader parameter space exploration in order to gain new insight into the climate system. Additionally, InvCM could be used to find unstable and hidden climate states, and to find climate states close to bifurcations such as the runaway greenhouse transition.

4.
Chaos ; 29(5): 053109, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31154764

RESUMEN

Extreme mesoscale weather, including tropical cyclones, squall lines, and floods, can be enormously damaging and yet challenging to simulate; hence, there is a pressing need for more efficient simulation strategies. Here, we present a new rare event sampling algorithm called quantile diffusion Monte Carlo (quantile DMC). Quantile DMC is a simple-to-use algorithm that can sample extreme tail behavior for a wide class of processes. We demonstrate the advantages of quantile DMC compared to other sampling methods and discuss practical aspects of implementing quantile DMC. To test the feasibility of quantile DMC for extreme mesoscale weather, we sample extremely intense realizations of two historical tropical cyclones, 2010 Hurricane Earl and 2015 Hurricane Joaquin. Our results demonstrate quantile DMC's potential to provide low-variance extreme weather statistics while highlighting the work that is necessary for quantile DMC to attain greater efficiency in future applications.

5.
Phys Rev Lett ; 120(14): 148701, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29694130

RESUMEN

Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

6.
Sci Adv ; 3(11): e1600983, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29134193

RESUMEN

Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO2 was 102 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.


Asunto(s)
Clima , Animales , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Planeta Tierra , Cubierta de Hielo/química , Datación Radiométrica
7.
Astrophys J ; 825(2)2016 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-30504961

RESUMEN

Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding model which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day-night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.

8.
Astrophys J ; 827(2)2016 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30504962

RESUMEN

The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. In this paper, I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a snowball state and a warm climate are only possible beyond this limit if the weathering rate in the snowball climate is smaller than the CO2 outgassing rate (otherwise stable snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.

9.
Astrophys J ; 832(1)2016 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30705445

RESUMEN

Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld." On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ~2 Gyr. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳0.3% of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

10.
Astrophys J Lett ; 815(1)2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30505426

RESUMEN

A terrestrial planet in an orbit far outside of the standard habitable zone could maintain surface liquid water as a result of H2-H2 collision-induced absorption by a thick H2 atmosphere. Without a stabilizing climate feedback, however, habitability would be accidental and likely brief. In this letter I propose stabilizing climate feedbacks for such a planet that require only that biological functions have an optimal temperature and operate less efficiently at other temperatures. For example, on a planet with a net source of H2 from its interior, H2-consuming life (such as methanogens) could establish a stable climate. If a positive perturbation is added to the equilibrium temperature, H2 consumption by life will increase (cooling the planet) until the equilibrium climate is reestablished. The potential existence of such feedbacks makes H2-warmed planets more attractive astrobiological targets.

11.
Proc Natl Acad Sci U S A ; 111(30): 10943-8, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25024204

RESUMEN

The effect of clouds on climate remains the largest uncertainty in climate change predictions, due to the inability of global climate models (GCMs) to resolve essential small-scale cloud and convection processes. We compare preindustrial and quadrupled CO2 simulations between a conventional GCM in which convection is parameterized and a "superparameterized" model in which convection is explicitly simulated with a cloud-permitting model in each grid cell. We find that the global responses of the two models to increased CO2 are broadly similar: both simulate ice-free Arctic summers, wintertime Arctic convection, and enhanced Madden-Julian oscillation (MJO) activity. Superparameterization produces significant differences at both CO2 levels, including greater Arctic cloud cover, further reduced sea ice area at high CO2, and a stronger increase with CO2 of the MJO.


Asunto(s)
Atmósfera , Dióxido de Carbono , Cambio Climático , Modelos Teóricos , Regiones Árticas , Hielo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...