Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35681619

RESUMEN

The poly(ADP-ribose) polymerase (PARP) family of proteins has been implicated in numerous cellular processes, including DNA repair, translation, transcription, telomere maintenance, and chromatin remodeling. Best characterized is PARP1, which plays a central role in the repair of single strand DNA damage, thus prompting the development of small molecule PARP inhibitors (PARPi) with the intent of potentiating the genotoxic effects of DNA damaging agents such as chemo- and radiotherapy. However, preclinical studies rapidly uncovered tumor-specific cytotoxicity of PARPi in a subset of cancers carrying mutations in the BReast CAncer 1 and 2 genes (BRCA1/2), which are defective in the homologous recombination (HR) DNA repair pathway, and several PARPi are now FDA-approved for single agent treatment in BRCA-mutated tumors. This phenomenon, termed synthetic lethality, has now been demonstrated in tumors harboring a number of repair gene mutations that produce a BRCA-like impairment of HR (also known as a 'BRCAness' phenotype). However, BRCA mutations or BRCAness is present in only a small subset of cancers, limiting PARPi therapeutic utility. Fortunately, it is now increasingly recognized that many small molecule agents, targeting a variety of molecular pathways, can induce therapeutic BRCAness as a downstream effect of activity. This review will discuss the potential for targeting a broad range of molecular pathways to therapeutically induce BRCAness and PARPi synthetic lethality.

2.
Transl Oncol ; 15(1): 101283, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34808460

RESUMEN

Signal transducer and activator of transcription 5 (STAT5) signaling plays a pathogenic role in both hematologic malignancies and solid tumors. In acute myeloid leukemia (AML), internal tandem duplications of fms-like tyrosine kinase 3 (FLT3-ITD) constitutively activate the FLT3 receptor, producing aberrant STAT5 signaling, driving cell survival and proliferation. Understanding STAT5 regulation may aid development of new treatment strategies in STAT5-activated cancers including FLT3-ITD AML. Poly ADP-ribose polymerase (PARP1), upregulated in FLT3-ITD AML, is primarily known as a DNA repair factor, but also regulates a diverse range of proteins through PARylation. Analysis of STAT5 protein sequence revealed putative PARylation sites and we demonstrate a novel PARP1 interaction and direct PARylation of STAT5 in FLT3-ITD AML. Moreover, PARP1 depletion and PARylation inhibition decreased STAT5 protein expression and activity via increased degradation, suggesting that PARP1 PARylation of STAT5 at least in part potentiates aberrant signaling by stabilizing STAT5 protein in FLT3-ITD AML. Importantly for translational significance, PARPis are cytotoxic in numerous STAT5-activated cancer cells and are synergistic with tyrosine kinase inhibitors (TKI) in both TKI-sensitive and TKI-resistant FLT3-ITD AML. Therefore, PARPi may have therapeutic benefit in STAT5-activated and therapy-resistant leukemias and solid tumors.

3.
Int J Mol Sci ; 21(16)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824412

RESUMEN

Reduced NME1 expression in melanoma cell lines, mouse models of melanoma, and melanoma specimens in human patients is associated with increased metastatic activity. Herein, we investigate the role of NME1 in repair of double-stranded breaks (DSBs) and choice of double-strand break repair (DSBR) pathways in melanoma cells. Using chromatin immunoprecipitation, NME1 was shown to be recruited rapidly and directly to DSBs generated by the homing endonuclease I-PpoI. NME1 was recruited to DSBs within 30 min, in concert with recruitment of ataxia-telangiectasia mutated (ATM) protein, an early step in DSBR complex formation, as well as loss of histone 2B. NME1 was detected up to 5 kb from the break site after DSB induction, suggesting a role in extending chromatin reorganization away from the repair site. shRNA-mediated silencing of NME1 expression led to increases in the homologous recombination (HR) and non-homologous end-joining (NHEJ) pathways of double-strand break repair (DSBR), and reduction in the low fidelity, alternative-NHEJ (A-NHEJ) pathway. These findings suggest low expression of NME1 drives DSBR towards higher fidelity pathways, conferring enhanced genomic stability necessary for rapid and error-free proliferation in invasive and metastatic cells. The novel mechanism highlighted in the current study appears likely to impact metastatic potential and therapy-resistance in advanced melanoma and other cancers.


Asunto(s)
Melanoma/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Endodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Histonas/metabolismo , Humanos , Nucleósido Difosfato Quinasas NM23/genética
4.
Proc Natl Acad Sci U S A ; 116(45): 22609-22618, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31591209

RESUMEN

A minority of cancers have breast cancer gene (BRCA) mutations that confer sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis), but the role for PARPis in BRCA-proficient cancers is not well established. This suggests the need for novel combination therapies to expand the use of these drugs. Recent reports that low doses of DNA methyltransferase inhibitors (DNMTis) plus PARPis enhance PARPi efficacy in BRCA-proficient AML subtypes, breast, and ovarian cancer open up the possibility that this strategy may apply to other sporadic cancers. We identify a key mechanistic aspect of this combination therapy in nonsmall cell lung cancer (NSCLC): that the DNMTi component creates a BRCAness phenotype through downregulating expression of key homologous recombination and nonhomologous end-joining (NHEJ) genes. Importantly, from a translational perspective, the above changes in DNA repair processes allow our combinatorial PARPi and DNMTi therapy to robustly sensitize NSCLC cells to ionizing radiation in vitro and in vivo. Our combinatorial approach introduces a biomarker strategy and a potential therapy paradigm for treating BRCA-proficient cancers like NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Metilasas de Modificación del ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Animales , Antineoplásicos , Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Terapia Combinada , Metilasas de Modificación del ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Quimioterapia Combinada , Femenino , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/efectos de la radiación , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ftalazinas/administración & dosificación , Radiación Ionizante
5.
Free Radic Biol Med ; 107: 228-244, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27890643

RESUMEN

The genetic material of all organisms is susceptible to modification. In some instances, these changes are programmed, such as the formation of DNA double strand breaks during meiotic recombination to generate gamete variety or class switch recombination to create antibody diversity. However, in most cases, genomic damage is potentially harmful to the health of the organism, contributing to disease and aging by promoting deleterious cellular outcomes. A proportion of DNA modifications are caused by exogenous agents, both physical (namely ultraviolet sunlight and ionizing radiation) and chemical (such as benzopyrene, alkylating agents, platinum compounds and psoralens), which can produce numerous forms of DNA damage, including a range of "simple" and helix-distorting base lesions, abasic sites, crosslinks and various types of phosphodiester strand breaks. More significant in terms of frequency are endogenous mechanisms of modification, which include hydrolytic disintegration of DNA chemical bonds, attack by reactive oxygen species and other byproducts of normal cellular metabolism, or incomplete or necessary enzymatic reactions (such as topoisomerases or repair nucleases). Both exogenous and endogenous mechanisms are associated with a high risk of single strand breakage, either produced directly or generated as intermediates of DNA repair. This review will focus upon the creation, consequences and resolution of single strand breaks, with a particular focus on two major coordinating repair proteins: poly(ADP-ribose) polymerase 1 (PARP1) and X-ray repair cross-complementing protein 1 (XRCC1).


Asunto(s)
Roturas del ADN de Cadena Simple , Daño del ADN , Reparación del ADN , Enfermedades del Sistema Nervioso/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Benzopirenos/toxicidad , Humanos , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo , Luz Solar
6.
Mol Oncol ; 8(7): 1326-38, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24880630

RESUMEN

FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)]. FEN1 protein expression was evaluated in 568 oestrogen receptor (ER) negative breast cancers, 894 ER positive breast cancers and 156 ovarian epithelial cancers. FEN1 mRNA overexpression was highly significantly associated with high grade (p = 4.89 × 10(-57)), high mitotic index (p = 5.25 × 10(-28)), pleomorphism (p = 6.31 × 10(-19)), ER negative (p = 9.02 × 10(-35)), PR negative (p = 9.24 × 10(-24)), triple negative phenotype (p = 6.67 × 10(-21)), PAM50.Her2 (p = 5.19 × 10(-13)), PAM50. Basal (p = 2.7 × 10(-41)), PAM50.LumB (p = 1.56 × 10(-26)), integrative molecular cluster 1 (intClust.1) (p = 7.47 × 10(-12)), intClust.5 (p = 4.05 × 10(-12)) and intClust. 10 (p = 7.59 × 10(-38)) breast cancers. FEN1 mRNA overexpression is associated with poor breast cancer specific survival in univariate (p = 4.4 × 10(-16)) and multivariate analysis (p = 9.19 × 10(-7)). At the protein level, in ER positive tumours, FEN1 overexpression remains significantly linked to high grade, high mitotic index and pleomorphism (ps < 0.01). In ER negative tumours, high FEN1 is significantly associated with pleomorphism, tumour type, lymphovascular invasion, triple negative phenotype, EGFR and HER2 expression (ps < 0.05). In ER positive as well as in ER negative tumours, FEN1 protein overexpression is associated with poor survival in univariate and multivariate analysis (ps < 0.01). In ovarian epithelial cancers, similarly, FEN1 overexpression is associated with high grade, high stage and poor survival (ps < 0.05). We conclude that FEN1 is a promising biomarker in breast and ovarian epithelial cancer.


Asunto(s)
Neoplasias de la Mama/genética , Mama/patología , Endonucleasas de ADN Solapado/genética , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Ováricas/genética , Ovario/patología , Anciano , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Mama/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Carcinoma Epitelial de Ovario , Femenino , Endonucleasas de ADN Solapado/análisis , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Glandulares y Epiteliales/diagnóstico , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Ovario/metabolismo , Pronóstico
7.
Oncotarget ; 5(10): 3273-86, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24830350

RESUMEN

Phosphatase and tensin homolog (PTEN) loss is associated with genomic instability. APE1 is a key player in DNA base excision repair (BER) and an emerging drug target in cancer. We have developed small molecule inhibitors against APE1 repair nuclease activity. In the current study we explored a synthetic lethal relationship between PTEN and APE1 in melanoma. Clinicopathological significance of PTEN mRNA and APE1 mRNA expression was investigated in 191 human melanomas. Preclinically, PTEN-deficient BRAF-mutated (UACC62, HT144, and SKMel28), PTEN-proficient BRAF-wildtype (MeWo), and doxycycline-inducible PTEN-knockout BRAF-wildtype MeWo melanoma cells were DNA repair expression profiled and investigated for synthetic lethality using a panel of four prototypical APE1 inhibitors. In human tumours, low PTEN mRNA and high APE1 mRNA was significantly associated with reduced relapse free and overall survival. Pre-clinically, compared to PTEN-proficient cells, PTEN-deficient cells displayed impaired expression of genes involved in DNA double strand break (DSB) repair. Synthetic lethality in PTEN-deficient cells was evidenced by increased sensitivity, accumulation of DSBs and induction of apoptosis following treatment with APE1 inhibitors. We conclude that PTEN deficiency is not only a promising biomarker in melanoma, but can also be targeted by a synthetic lethality strategy using inhibitors of BER, such as those targeting APE1.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/antagonistas & inhibidores , Melanoma/genética , Fosfohidrolasa PTEN/deficiencia , Antineoplásicos/farmacología , Apoptosis , Western Blotting , Línea Celular Tumoral , Ensayo Cometa , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Melanoma/mortalidad , Melanoma/patología , Terapia Molecular Dirigida , ARN Mensajero/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección
8.
Cancer Manag Res ; 6: 77-92, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24600246

RESUMEN

Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, in established tumors, DNA repair activity is required to counteract oxidative DNA damage that is prevalent in the tumor microenvironment. Emerging clinical data provide compelling evidence that overexpression of DNA repair factors may have prognostic and predictive significance in patients. More recently, DNA repair inhibition has emerged as a promising target for anticancer therapy. Synthetic lethality exploits intergene relationships where the loss of function of either of two related genes is nonlethal, but loss of both causes cell death. Exploiting this approach by targeting DNA repair has emerged as a promising strategy for personalized cancer therapy. In the current review, we focus on recent advances with a particular focus on synthetic lethality targeting in cancer.

9.
Int J Cancer ; 132(12): 2778-86, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23225521

RESUMEN

X-ray repair cross-complementing gene 1 (XRCC1) is essential for DNA base excision repair, single strand break repair and nucleotide excision repair. We investigated clinicopathological and functional significance of XRCC1 expression in ovarian cancers. XRCC1 protein expression was evaluated in 195 consecutive human ovarian cancers and correlated with clinicopathological variables and survival outcomes. Functional preclinical studies were conducted in a panel of XRCC1 deficient and proficient Chinese hamster and Human cancer cells for cisplatin chemosensitivity. Clonogenic assay, neutral COMET assay, γH2AX immunocytochemistry and flow cytometric analyses were performed in cells. In ovarian cancer, 48% of the tumors were positive for XRCC1 expression and significantly associated with higher stage (p = 0.006), serous type tumors (p = 0.008), suboptimal de-bulking (p = 0.004) and platinum resistance (p < 0.0001). Positive XRCC1 had twofold increase of risk of death (p = 0.007) and progression (p < 0.0001). In the multivariate Cox model, XRCC1 expression was independently associated with cancer specific [p = 0.038] and progression free survival [p = 0.003]. Preclinically, XRCC1 negative cells were sensitive to cisplatin compared to XRCC1 positive cells. Sensitivity to cisplatin in XRCC1 negative cells was associated with accumulation of DNA double strand breaks and G2/M cell cycle arrest. XRCC1 expression is associated with adverse clinicopathological and survival outcomes in patients. Preclinical data provides mechanistic functional evidence for cisplatin sensitivity in XRCC1 negative cells. XRCC1 is a promising predictive biomarker in ovarian cancer.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Animales , Antineoplásicos/uso terapéutico , Línea Celular , Cricetinae , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Femenino , Expresión Génica , Silenciador del Gen , Humanos , Estadificación de Neoplasias , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/mortalidad , Platino (Metal)/uso terapéutico , Interferencia de ARN , Resultado del Tratamiento , Ensayo de Tumor de Célula Madre , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
10.
Cancer Res ; 73(5): 1621-34, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23253910

RESUMEN

XRCC1 is a key component of DNA base excision repair, single strand break repair, and backup nonhomologous end-joining pathway. XRCC1 (X-ray repair cross-complementing gene 1) deficiency promotes genomic instability, increases cancer risk, and may have clinical application in breast cancer. We investigated XRCC1 expression in early breast cancers (n = 1,297) and validated in an independent cohort of estrogen receptor (ER)-α-negative breast cancers (n = 281). Preclinically, we evaluated XRCC1-deficient and -proficient Chinese hamster and human cancer cells for synthetic lethality application using double-strand break (DSB) repair inhibitors [KU55933 (ataxia telangectasia-mutated; ATM inhibitor) and NU7441 (DNA-PKcs inhibitor)]. In breast cancer, loss of XRCC1 (16%) was associated with high grade (P < 0.0001), loss of hormone receptors (P < 0.0001), triple-negative (P < 0.0001), and basal-like phenotypes (P = 0.001). Loss of XRCC1 was associated with a two-fold increase in risk of death (P < 0.0001) and independently with poor outcome (P < 0.0001). Preclinically, KU55933 [2-(4-Morpholinyl)-6-(1-thianthrenyl)-4H-pyran-4-one] and NU7441 [8-(4-Dibenzothienyl)-2-(4-morpholinyl)-4H-1-benzopyran-4-one] were synthetically lethal in XRCC1-deficient compared with proficient cells as evidenced by hypersensitivity to DSB repair inhibitors, accumulation of DNA DSBs, G2-M cell-cycle arrest, and induction of apoptosis. This is the first study to show that XRCC1 deficiency in breast cancer results in an aggressive phenotype and that XRCC1 deficiency could also be exploited for a novel synthetic lethality application using DSB repair inhibitors. Cancer Res; 73(5); 1621-34. ©2012 AACR.


Asunto(s)
Neoplasias de la Mama/genética , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Cricetinae , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Terapia Molecular Dirigida , Pronóstico , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
11.
Antioxid Redox Signal ; 18(18): 2392-8, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22894650

RESUMEN

Chronic inflammation is a driving force for gastric carcinogenesis. Reactive oxygen species (ROS) generated during the inflammatory process generates DNA damage that is processed through the DNA repair pathways. In this study, we profiled key DNA repair proteins (single-strand-selective monofunctional uracil-DNA glycosylase 1 [SMUG1], Flap endonuclease 1 [FEN1], X-ray repair cross-complementing gene 1 [XRCC1], and Ataxia telangiectasia mutated [ATM]) involved in ROS-induced oxidative DNA damage repair in gastric cancer and correlated to clinicopathological outcomes. High expression of SMUG1, FEN1, and XRCC1 correlated to high T-stage (T3/T4) (p-values: 0.001, 0.005, and 0.02, respectively). High expression of XRCC1 and FEN1 also correlated to lymph node-positive disease (p-values: 0.009 and 0.02, respectively). High expression of XRCC1, FEN1, and SMUG1 correlated with poor disease-specific survival (DSS) (p-values: 0.001, 0.006, and 0.05, respectively) and poor disease-free survival (DFS) (p-values: 0.001, 0.001, and 0.02, respectively). Low expression of ATM correlated to lymph node positivity (p=0.03), vascular invasion (p=0.05), and perineural invasion (p=0.005) and poor DFS (p=0.001) and poor DSS (p=0.003). In the multivariate Cox model, high XRCC1 and low ATM were independently associated with poor survival (p=0.008 and 0.011, respectively). Our observation supports the hypothesis that DNA repair factors are promising biomarkers for personalized therapy in gastric cancer.


Asunto(s)
Adenocarcinoma/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias Gástricas/metabolismo , Adenocarcinoma/patología , Adenocarcinoma/secundario , Adenocarcinoma/terapia , Anciano , Reparación del ADN , Femenino , Endonucleasas de ADN Solapado/metabolismo , Humanos , Estimación de Kaplan-Meier , Metástasis Linfática , Masculino , Análisis Multivariante , Medicina de Precisión , Modelos de Riesgos Proporcionales , Especies Reactivas de Oxígeno , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Neoplasias Gástricas/terapia , Uracil-ADN Glicosidasa/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
12.
Int J Cancer ; 131(10): 2433-44, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22377908

RESUMEN

An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In this study, we have investigated the ability of APE1 inhibitors to induce synthetic lethality (SL) in a panel of DNA double-strand break (DSB) repair deficient and proficient cells; i) Chinese hamster (CH) cells: BRCA2 deficient (V-C8), ATM deficient (V-E5), wild type (V79) and BRCA2 revertant [V-C8(Rev1)]. ii) Human cancer cells: BRCA1 deficient (MDA-MB-436), BRCA1 proficient (MCF-7), BRCA2 deficient (CAPAN-1 and HeLa SilenciX cells), BRCA2 proficient (PANC1 and control SilenciX cells). We also tested SL in CH ovary cells expressing a dominant-negative form of APE1 (E8 cells) using ATM inhibitors and DNA-PKcs inhibitors (DSB inhibitors). APE1 inhibitors are synthetically lethal in BRCA and ATM deficient cells. APE1 inhibition resulted in accumulation of DNA DSBs and G2/M cell cycle arrest. SL was also demonstrated in CH cells expressing a dominant-negative form of APE1 treated with ATM or DNA-PKcs inhibitors. We conclude that APE1 is a promising SL target in cancer.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Animales , Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cricetinae , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Humanos
13.
Curr Mol Pharmacol ; 5(1): 115-24, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22122468

RESUMEN

The cytotoxicity of both chemotherapy and radiotherapy is to a large extent directly related to their ability to induce DNA damage. The ability of cancer cells to recognise and repair this damage contributes to therapeutic resistance. Sub-optimal DNA repair in normal tissue may impair normal tissue tolerance. Inter-individual differences in DNA repair pathways may also influence the natural history and progression of cancer and hence prognosis. The base excision repair (BER) pathway has evolved to repair base damage induced by endogenous and exogenous base targeting agents. Polymorphic variants of genes, mRNA expression and alterations in protein expression within BER, may alter DNA repair capacity and influence both cancer progression and clinical responses to chemotherapy and radiotherapy. We discuss the role of BER genes as potential predictive and prognostic markers in human cancer and review the current state of play within this field.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Reparación del ADN , Neoplasias/diagnóstico , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Polimorfismo de Nucleótido Simple , Pronóstico , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
14.
Cancer Treat Rev ; 36(5): 425-35, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20056333

RESUMEN

DNA base excision repair (BER) is critically involved in the processing of DNA base damage induced by alkylating agents. Pharmacological inhibition of BER (using PARP inhibitors), either alone or in combination with chemotherapy has recently shown promise in clinical trials. Human apurinic/apyrimidinic endonuclease 1(APE1) is an essential BER protein that is involved in the processing of potentially cytotoxic abasic sites that are obligatory intermediates in BER. Here we provide a summary of the basic mechanistic role of APE1 in DNA repair and redox regulation and highlight preclinical and clinical data that confirm APE1 as a valid anticancer drug target. Development of small molecule inhibitors of APE1 is an area of intense research and current evidence using APE1 inhibitors has demonstrated potentiation of cytotoxicity of alkylating agents in preclinical models implying translational applications in cancer patients.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , ADN de Neoplasias/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Neoplasias/enzimología , Animales , Reparación del ADN/efectos de los fármacos , ADN de Neoplasias/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/antagonistas & inhibidores , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...