Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
BMC Plant Biol ; 24(1): 713, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060959

RESUMEN

Rice (Oryza sativa L.) is an essential food for half of the global population and is vital in maintaining global food security. Climate change, increasing population and recent incident of COVID pandemic has generated financial burden and threaten the global food security. Due to theses factors rice cultivation also has to face significant challenges. frequent weather changes pose a considerable challenge to agricultural planning, which was previously relaying on consistent seasonal variations. In this context, rice cultivation is particularly sensitive to cold, where its development and productivity inhibited by low temperatures (< 18 °C). Developing rice varietes with low temprature tolerence and good yield potential is one of the major goals of current breeding efforts of plant scientists. For this purpose, short duration and early rice varieties are most favorable to avoid cold stress and yield more in less number of days. this study was designed to investigate the effect of low temperatures on different rice varieties. the study was designed to identify low temprature tolerent genotypes with early and regular cultivation. For this, thirty-four genotypes were evaluated in two gorwing seasons (2018-2019) with four different sowing times. Statistically sowing time showed significant interaction between all yield contributing parameters. The data indicate that exposure to low temperatures during the reproductive phase prolongs the maturation period of the crop, also length of the panicle and the fertility of the spikelets drops, resulting in a significant decrease in the production of sensitive varieties. Some varieties are more sensitive to cold stress compared to others. In the Egyptian context, Giza176, Sakha104, and Sakha107 are recommended for early cultivation, while the genotypes Giza 179, Sakha101, Sakha104, and GZ 9730-1-1-1-1 are indicated for the normal cultivation period. The Sakha104 variety is particularly notable, as it is recommended for both purposes. In addition, the data obtained in this study provide valuable information for selecting rice varieties suitable for double cropping in the North Delta of Egypt. This study also contributes to the existing literature, providing insights into the resilience of rice cultivation in the face of climate change.


Asunto(s)
Respuesta al Choque por Frío , Genotipo , Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Respuesta al Choque por Frío/genética , Frío , Factores de Tiempo , Estaciones del Año
3.
Plant Physiol Biochem ; 213: 108853, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901231

RESUMEN

To reduce heavy metal toxicity, like that induced by thallium (TI) in plants, growth-promoting bacteria (GPB) are a widely used to enhance plant tolerance to heavy metals toxicity. In our study, we characterized seven GPB and identified Actinoplanes spp., as the most active strain. This bioactive strain was then applied to alleviate TI phytotoxicity. TI contamination (20 mg/kg soil) induced TI bioaccumulation, reducing wheat growth (biomass accumulation) and photosynthesis rate, by about 55% and 90%, respectively. TI stress also induced oxidative damages as indicated by increased oxidative markers (H2O2 and lipid peroxidation (MDA)). Interestingly, Actinoplanes spp. significantly reduced growth inhibition and oxidative stress by 20% and 70%, respectively. As a defense mechanism to mitigate the TI toxicity, wheat plants showed improved antioxidant and detoxification defense including increased phenolic and tocopherols levels as well as peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) enzymes activities. These defense mechanisms were further induced by Actinoplanes spp. Additionally, Actinoplanes spp. increased the production of heavy metal-binding ligands such as metallothionein, phytochelatins, total glutathione, and glutathione S-transferase activity by 100%, 90%, 120%, and 100%, respectively. This study, therefore, elucidated the physiological and biochemical bases underlying TI-stress mitigation impact of Actinoplanes spp. Overall, Actinoplanes spp. holds promise as a valuable approach for ameliorating TI toxicity in plants. KEYBOARD: Actinobacteria, Bioaccumulation, Detoxification, Membrane damage, Redox regulation.


Asunto(s)
Estrés Oxidativo , Talio , Triticum , Triticum/efectos de los fármacos , Triticum/metabolismo , Estrés Oxidativo/efectos de los fármacos , Talio/metabolismo , Talio/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Catalasa/metabolismo
4.
BMC Plant Biol ; 24(1): 564, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879470

RESUMEN

BACKGROUND: Three Amino acid Loop Extension (TALE) belongs to the homeobox group of genes that are important constituents of plant systems. The TALE gene family is instrumental not only in growth and development but also plays an essential role in regulating plant response to environmental adversaries. RESULTS: In the present study, we isolated 21 CsTALE genes from the cucumber (Cucumis sativus L.) genome database. Bioinformatics tools were put in place to understand the structural and functional components of the CsTALE gene family. The evolutionary analysis dissected them into seven subclades (KNOX-I, KNOX-II, and BELL-I to BELL-V). The cis-acting elements in the promoter region of CsTALE genes disclosed that they are key regulators of hormonal and stress-related processes. Additionally, the STRING database advocated the concerting role of CsTALE proteins with other key transcription factors potent in plant developmental biology. The CsmiR319 and CsmiR167a-3p targeting the CsTALE15 and CsTALE16, respectively, further assert the importance of the CsTALE gene family posttranscriptional-related processes. Tissue-specific gene expression unfolded the fundamental involvement of CsTALE genes as they were expressed throughout the developmental stages. Under waterlogging stress, the CsTALE17 expressed significantly higher values in WL, WL-NAA, and WL-ETH but not in WL-MeJA-treated samples. CONCLUSIONS: The present study reveals the evolution and functions of the CsTALE gene family in cucumber. Our work will provide a platform that will help future researchers address the issue of waterlogging stress in the Yangtze River Delta.


Asunto(s)
Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Cucumis sativus/genética , Cucumis sativus/fisiología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Evolución Molecular , Filogenia , Genes de Plantas
5.
BMC Plant Biol ; 24(1): 572, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890574

RESUMEN

BACKGROUND: Nitrogen (N) availability is crucial in regulating plants' abiotic stress resistance, particularly at the seedling stage. Nevertheless, plant responses to N under salinity conditions may vary depending on the soil's NH4+ to NO3- ratio. METHODS: In this study, we investigated the effects of different NH4+:NO3- ratios (100/0, 0/100, 25/75, 50/50, and 75/25) on the growth and physio-biochemical responses of soybean seedlings grown under controlled and saline stress conditions (0-, 50-, and 100-mM L- 1 NaCl and Na2SO4, at a 1:1 molar ratio). RESULTS: We observed that shoot length, root length, and leaf-stem-root dry weight decreased significantly with increased saline stress levels compared to control. Moreover, there was a significant accumulation of Na+, Cl-, hydrogen peroxide (H2O2), and malondialdehyde (MDA) but impaired ascorbate-glutathione pools (AsA-GSH). They also displayed lower photosynthetic pigments (chlorophyll-a and chlorophyll-b), K+ ion, K+/Na+ ratio, and weakened O2•--H2O2-scavenging enzymes such as superoxide dismutase, catalase, peroxidase, monodehydroascorbate reductase, glutathione reductase under both saline stress levels, while reduced ascorbate peroxidase, and dehydroascorbate reductase under 100-mM stress, demonstrating their sensitivity to a saline environment. Moreover, the concentrations of proline, glycine betaine, total phenolic, flavonoids, and abscisic acid increased under both stresses compared to the control. They also exhibited lower indole acetic acid, gibberellic acid, cytokinins, and zeatine riboside, which may account for their reduced biomass. However, NH4+:NO3- ratios caused a differential response to alleviate saline stress toxicity. Soybean seedlings supplemented with optimal ratios of NH4+:NO3- (T3 = 25:75 and T = 4 50:50) displayed lower Na+ and Cl- and ABA but improved K+ and K+/Na+, pigments, growth hormones, and biomass compared to higher NH4+:NO3- ratios. They also exhibited higher O2•--H2O2-scavenging enzymes and optimized H2O2, MDA, and AsA-GSH pools status in favor of the higher biomass of seedlings. CONCLUSIONS: In summary, the NH4+ and NO3- ratios followed the order of 50:50 > 25:75 > 0:100 > 75:25 > 100:0 for regulating the morpho-physio-biochemical responses in seedlings under SS conditions. Accordingly, we suggest that applying optimal ratios of NH4+ and NO3- (25/75 and 50:50) can improve the resistance of soybean seedlings grown in saline conditions.


Asunto(s)
Antioxidantes , Glycine max , Nitratos , Reguladores del Crecimiento de las Plantas , Tolerancia a la Sal , Plantones , Glycine max/fisiología , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Estrés Salino , Iones/metabolismo
6.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840053

RESUMEN

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Asunto(s)
Germinación , Lens (Planta) , Semillas , Temperatura , Germinación/fisiología , Semillas/fisiología , Semillas/crecimiento & desarrollo , Lens (Planta)/fisiología , Lens (Planta)/crecimiento & desarrollo , Agua/metabolismo , Modelos Biológicos , Presión Osmótica
7.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702592

RESUMEN

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Asunto(s)
Antimonio , Micorrizas , Olea , Contaminantes del Suelo , Micorrizas/fisiología , Olea/microbiología , Contaminantes del Suelo/metabolismo , Antimonio/metabolismo , Adaptación Fisiológica , Residuos Industriales , Fotosíntesis/efectos de los fármacos , Biodegradación Ambiental , Biomasa
8.
Food Chem X ; 22: 101418, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38736980

RESUMEN

Purpose of current study was to determine physicochemical, triglyceride composition, and functional groups of wild adlay accessions (brown, black, yellow, grey, green, off white, and purple) to find out its scope as cereal crop. Triglycerides, minerals and functional groups were determined through Gas chromatography, spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer respectively. Results revealed variation among bulk densities, specific densities, percent empty spaces, and corresponding grain counts per 10 g of sample are useful in distinguishing brown, black, yellow, grey, green, off white, and purple wild adlay accessions. Specific density and grain count per 10 g sample was significantly related. No statistical relationship exists among the pronounced physical characteristics. Brown adlay expressed the highest protein, fat, and fiber contents 15.82%, 4.76% and 2.37% respectively. Protein, fat, ash, and fiber percent contents were found comparable to cultivated adlay. Spectrophotometric analysis revealed macro elements including phosphorus, potassium, calcium, and sodium in the range 0.3% - 2.2% and micro elements boron, iron, copper, zinc, and manganese in the range 1.6 mg/kg - 20.8 mg/kg. Gas chromatography showed polyunsaturated fatty acids (PUFA) constitute the primary fraction (39% ± 7.2) of wild adlay triglycerides. Linoleic and palmitic acids were present as prominent fatty acids, 43.5% ±1.4 and 26.3% ±1.4 respectively. Infra-red frequencies distinguished functional groups in narrow band and fingerprint region of protein in association with out of plane region leading to structural differences among adlay accessions. Comparison of major distinguishing vibrational frequencies among different flours indicated black adlay containing highest functional groups appeared promising for varietal development.

9.
Plant Physiol Biochem ; 211: 108705, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714128

RESUMEN

Research on nanoparticles (NPs) and future elevated CO2 (eCO2) is extensive, but the effects of SeNPs on plant growth and secondary metabolism under eCO2 remain uncertain. In this study, we explored the impact of SeNPs and/or eCO2 on the growth, physiology, chemical composition (primary metabolites, coumarins, and essential oils), and antioxidant capacity of Trachyspermum (T.) ammi. The treatment with SeNPs notably improved the biomass and photosynthesis of T. ammi plants, particularly under eCO2 conditions. Plant fresh and dry weights were improved by about 19, 33 and 36% in groups treated by SeNPs, eCO2, and SeNPs + eCO2, respectively. SeNPs + eCO2 induced photosynthesis, consequently enhancing sugar and amino acid levels. Similar to the increase in total sugars, amino acids showed variable enhancements ranging from 6 to 42% upon treatment with SeNPs + eCO2. At the level of the secondary metabolites, SeNPs + eCO2 substantially augmented coumarin biosynthesis and essential oil accumulation. Consistently, there were increases in coumarins and essential oil precursors (shikimic and cinnamic acids) and their biosynthetic enzymes. The enhanced accumulation of coumarins and essential oils resulted in increased overall antioxidant activity, as evidenced by improvements in FRAP, ORAC, TBARS, conjugated dienes, and inhibition % of hemolysis. Conclusively, the application of SeNPs demonstrates significant enhancements in plant growth and metabolism under future CO2 conditions, notably concerning coumarin metabolism and essential oil production of T. ammi.


Asunto(s)
Dióxido de Carbono , Cumarinas , Aceites Volátiles , Selenio , Aceites Volátiles/metabolismo , Cumarinas/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Selenio/metabolismo , Selenio/farmacología , Antioxidantes/metabolismo , Nanopartículas , Fotosíntesis/efectos de los fármacos
10.
BMC Plant Biol ; 24(1): 477, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816803

RESUMEN

BACKGROUND: The rate of germination and other physiological characteristics of seeds that are germinating are impacted by deep sowing. Based on the results of earlier studies, conclusions were drawn that deep sowing altered the physio-biochemical and agronomic characteristics of wheat (Triticum aestivum L.). RESULTS: In this study, seeds of wheat were sown at 2 (control) and 6 cm depth and the impact of exogenously applied salicylic acid and tocopherol (Vitamin-E) on its physio-biochemical and agronomic features was assessed. As a result, seeds grown at 2 cm depth witnessed an increase in mean germination time, germination percentage, germination rate index, germination energy, and seed vigor index. In contrast, 6 cm deep sowing resulted in negatively affecting all the aforementioned agronomic characteristics. In addition, deep planting led to a rise in MDA, glutathione reductase, and antioxidants enzymes including APX, POD, and SOD concentration. Moreover, the concentration of chlorophyll a, b, carotenoids, proline, protein, sugar, hydrogen peroxide, and agronomic attributes was boosted significantly with exogenously applied salicylic acid and tocopherol under deep sowing stress. CONCLUSIONS: The results of the study showed that the depth of seed sowing has an impact on agronomic and physio-biochemical characteristics and that the negative effects of deep sowing stress can be reduced by applying salicylic acid and tocopherol to the leaves.


Asunto(s)
Germinación , Ácido Salicílico , Tocoferoles , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/efectos de los fármacos , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Tocoferoles/metabolismo , Germinación/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Antioxidantes/metabolismo , Estrés Fisiológico , Desarrollo Sostenible , Clorofila/metabolismo
11.
Chemosphere ; 358: 141909, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593960

RESUMEN

The extensive use of fenitrothion (FNT) in agricultural practices induces its persistence in soil and waterways. Therefore, it is essential to implement effective management practices such as using cyanobacteria for FNT removal and accumulation, particularly under accidental contamination. To this end, we evaluated the responses of two freshwater cyanobacteria taxa, Nostoc muscorum and Anabaena laxa to mild (7.5 mg L-1) and high (15 mg L-1) levels of FNT over a period of 7 d. Compared to N. muscorum, A. laxa was more tolerant to FNT, exhibiting higher FNT uptake and removal efficiencies at mild (16.3%) and high (17.5%) levels. FNT induced a dose-dependent decrease in cell growth, Chl a, phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase activities, which were more pronounced in N. muscorum. Moreover, FNT significantly increased oxidative damage markers i.e., increased lipid peroxidation (MDA), protein oxidation, H2O2 levels and NADPH oxidase enzyme activity, to more extent in N. muscorum. Compared to N. muscorum, A. laxa had high antioxidant capacity (FRAP), glutathione and increased activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase and superoxide dismutase, suggesting a robust antioxidant defense mechanism to mitigate FNT toxicity. However, N. muscorum devoted the induction of ascorbate content and the activity of catalase, peroxidase, monodehydroascorbate reductase, ascorbate peroxidase, and dehydroascorbate reductase enzymes. Although A. laxa had greater intracellular FNT, it experienced less FNT-induced oxidative stress, likely due to over production of antioxidants. Consequently, A. laxa is considered as a promising candidate for FNT phycoremediation. Our findings provide fundamental information on species-specific toxicity of FNT among cyanobacteria and the environmental risk of FNT toxicity in aquatic environments.


Asunto(s)
Fenitrotión , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Fenitrotión/toxicidad , Fenitrotión/metabolismo , Agua Dulce , Cianobacterias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Anabaena/metabolismo , Anabaena/efectos de los fármacos , Antioxidantes/metabolismo , Nostoc muscorum/metabolismo , Glutatión Transferasa/metabolismo , Biodegradación Ambiental , Peróxido de Hidrógeno/metabolismo
12.
Heliyon ; 10(6): e27811, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524627

RESUMEN

Plant functional traits are consistently linked with certain ecological factors (i.e., abiotic and biotic), determining which components of a plant species pool are assembled into local communities. In this sense, non-native naturalized plants show more plasticity of morphological traits by adopting new habitat (an ecological niche) of the invaded habitats. This study focuses on the biomass allocation pattern and consistent traits-environment linkages of a naturalized Datura innoxia plant population along the elevation gradient in NW, Pakistan. We sampled 120 plots of the downy thorn apple distributed in 12 vegetation stands with 18 morphological and functional biomass traits during the flowering season and were analyzed along the three elevation zones having altitude ranges from 634.85 m to 1405.3 m from sear level designated as Group I to III identified by Ward's agglomerative clustering strategy (WACS). Our results show that many morphological traits and biomass allocation in different parts varied significantly (p < 0.05) in the pair-wise comparisons along the elevation. Likewise, all plant traits decreased from lower (drought stress) to high elevation zones (moist zones), suggesting progressive adaptation of Datura innoxia with the natural vegetation in NW Pakistan. Similarly, the soil variable also corresponds with the trait's variation e.g., significant variations (P < 0.05) of soil organic matter, organic carbon, Nitrogen and Phosphorus was recorded. The trait-environment linkages were exposed by redundancy analysis (RDA) that was co-drive by topographic (elevation, r = -0.4897), edaphic (sand, r = -0.4565 and silt, r = 0.5855) and climatic factors. Nevertheless, the influences of climatic factors were stronger than soil variables that were strongly linked with elevation gradient. The study concludes that D. innoxia has adopted the prevailing environmental and climatic conditions, and further investigation is required to evaluate the effects of these factors on their phytochemical and medicinal value.

13.
Front Nutr ; 11: 1276307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450233

RESUMEN

Dryopteris filix-mas (hereafter D. filix-mas), a wild leafy vegetable, has gained popularity among high mountain residents in the Hindukush-Himalaya region due to its exceptional nutritional profile, and their commercial cultivation also offers viable income alternatives. Nevertheless, besides phytochemicals with medicinal applications, ecological factors strongly affect their mineral contents and nutritional composition. Despite this, little has been known about how this wild fern, growing in heterogeneous ecological habitats with varying soil physiochemical properties and coexisting species, produces fronds with optimal mineral and nutritional properties. Given its nutritional and commercial significance, we investigated how geospatial, topographic, soil physiochemical characteristics and coexisting plants influence this widely consumed fern's mineral and nutrient content. We collected soil, unripe fern fronds, and associated vegetation from 27 D. filix-mas populations in Swat, NW Pakistan, and were analyzed conjointly with cluster analysis and ordination. We found that the fronds from sandy-loam soils at middle elevation zones exhibited higher nitrogen contents (9.17%), followed by crude fibers (8.62%) and fats (8.09%). In contrast, juvenile fronds from the lower and high elevation zones had lower moisture (1.26%) and ash (1.59%) contents, along with fewer micronutrients such as calcium (0.14-0.16%), magnesium (0.18-0.21%), potassium (0.72-0.81%), and zinc (12% mg/kg). Our findings indicated the fern preference for middle elevation zones with high organic matter and acidic to neutral soil (pH ≥ 6.99) for retaining higher nutritional contents. Key environmental factors emerged from RDA analysis, including elevation (r = -0.42), aspect (r = 0.52), P-3 (r = 0.38), K+ (r = 0.41), EC (r = 0.42), available water (r = -0.42), and field capacity (r = -0.36), significantly impacting fern frond's mineral accumulation and nutrient quality enhancement. Furthermore, coexisting plant species (r = 0.36) alongside D. filix-mas played a pivotal role in improving its mineral and nutritional quality. These findings shed light on the nutritional potential of D. filix-mas, which could help address malnutrition amidst future scarcity induced by changing climates. However, the prevalent environmental factors highlighted must be considered if the goal is to cultivate this fern on marginal lands for commercial exploitation with high mineral and nutrient yields in Hindukush-Himalaya.

15.
Nat Plants ; 10(3): 494-511, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38467800

RESUMEN

Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Péptidos/metabolismo , Plantas/metabolismo , Pared Celular/metabolismo , Raíces de Plantas/metabolismo
16.
Int J Phytoremediation ; 26(8): 1269-1279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38318857

RESUMEN

Soil salinity caused a widespread detrimental issue that hinders productivity in agriculture and ecological sustainability, while waste-derived soil amendments like biochar have drawn attention for their capacity to act as a mitigating agent, by enhancing the physical and chemical features of soil, and contributing to the recovery of agricultural waste resources. However, the information concerning biochar and salinity which affect the physicochemical characteristics of soils, crop physiology, and growth is limited. To investigate whether biochar mitigates the salinity stress on wheat crop seedlings, we grow them with salinity stress (120 mM), and biochar (20 tons ha-1), and its interactive effects. The soil properties of soil organic carbon (SOC), soil organic matter (SOM), dissolved organic carbon (DOC), and soil available phosphorus (SAP) decreased in the saline soil by 36.71%, 46.97%, 26.31%, and 15.00%, while biochar treatment increased SOC, DOC, and SAP contents by 7.42%, 31.57%, and 15.00%, respectively. On the other hand, dissolved organic nitrogen (DON) contents decreased in all the treatments compared to the control. The root growth traits, SPAD values, leaf nitrogen, photosynthetic parameters, antioxidant enzymes, and reactive oxygen species decreased in the saline treatment while increasing in the biochar and interactive treatment. Thus, these activities resulted in higher leaves and root biomass in the biochar treatment alone and interactive treatment of salinity and biochar. According to principal component analysis, redundancy analysis, and the mantel test, using biochar in conjunction with salinity treatment was found to be more effective than salinity treatment alone. The results of this study suggest that biochar can be used as a sustainable agricultural technique and a means of mitigation agent by lowering soil salinity while increasing the biomass of crops.


Biochar improves the physical and nutritional quality of soil and plant function.Salinity stress declined the physiological activities and biomass of the crop.Biochar mitigates the salinity stress in soil and enhances the plant functioning.Exposure to both treatments enhances the antioxidant enzyme activity and biomass.


Asunto(s)
Agricultura , Biodegradación Ambiental , Carbón Orgánico , Salinidad , Suelo , Triticum , Suelo/química , Triticum/crecimiento & desarrollo , Agricultura/métodos , Fósforo , Nitrógeno/metabolismo
17.
Sci Rep ; 14(1): 2764, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308017

RESUMEN

Aquatic biota are threatened by climate warming as well as other anthropogenic stressors such as eutrophication by phosphates and nitrate. However, it remains unclear how nitrate exposure can alter the resilience of microalgae to climate warming, particularly heatwaves. To get a better understanding of these processes, we investigated the effect of elevated temperature and nitrate pollution on growth, metabolites (sugar and protein), oxidative damage (lipid peroxidation), and antioxidant accumulation (polyphenols, proline) in Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. The experiment involved a 3 × 3 factorial design, where microalgae were exposed to one of three nitrate levels (5, 50, or 200 mg L-1 NO3-l) at 20 °C for 2 weeks. Subsequently, two heatwave scenarios were imposed: a short and moderate heatwave at 24 °C for 2 weeks, and a long and intense heatwave with an additional 2 weeks at 26 °C. A positive synergistic effect of heatwaves and nitrate on growth and metabolites was observed, but this also led to increased oxidative stress. In the short and moderate heatwave, oxidative damage was controlled by increased antioxidant levels. The high growth, metabolites, and antioxidants combined with low oxidative stress during the short and moderate heatwaves in moderate nitrate (50 mg L-1) led to a sustainable increased food availability to grazers. On the other hand, long and intense heatwaves in high nitrate conditions caused unsustainable growth due to increased oxidative stress and relatively low antioxidant (proline) levels, increasing the risk for massive algal die-offs.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Antioxidantes/metabolismo , Nitratos/farmacología , Microalgas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Prolina/farmacología
18.
RSC Adv ; 14(9): 5754-5763, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38362085

RESUMEN

In the current research, we produced green, cost-effective, eco-friendly silver nanoparticles using a single-step approach. Plants are considered highly desirable systems for nanoparticle synthesis because they possess a variety of secondary metabolites with significant reduction potential. In the current research, the dried leaf extract of Rubus fruticosus was utilized as a capping and reducing agent for the fabrication of silver nanoparticles, to prepare reliable biogenic silver nanoparticles and subsequently to investigate their potential against some common phytopathogens. The prepared silver nanoparticles were exploited to quantify the total flavonoid content (TFC), total phenolic content (TPC) and DPPH-based antioxidant activity. Different concentrations of aqueous extracts of plant leaves and silver nitrate (AgNO3) were reacted, and the color change of the reactant mixture confirmed the formation of Rubus fruticosus leaf-mediated silver nanoparticles (RFL-AgNPs). A series of characterization techniques such as UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction revealed the successful synthesis of silver nanoparticles. The surface plasmon resonance peak appeared at 449 nm. XRD analysis demonstrated the crystalline nature, EDX confirmed the purity, and TEM demonstrated that the nanoparticles are mostly spherical in form. Furthermore, the biosynthesized nanoparticles were screened for in vitro antibacterial activity, antioxidant activity, and total phenolic and flavonoid content. The nanoparticles were used in different concentrations alone and in combination with plant extracts to inhibit Erwinia caratovora and Ralstonia solanacearum. In high-throughput assays used to inhibit these plant pathogens, the nanoparticles were highly toxic against bacterial pathogens. This study can be exploited for planta assays against phytopathogens utilizing the same formulations for nanoparticle synthesis and to develop potent antibacterial agents to combat plant diseases.

19.
J Sci Food Agric ; 104(9): 5197-5206, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38323721

RESUMEN

BACKGROUND: Coffee farming constitutes a substantial economic resource, representing a source of income for several countries due to the high consumption of coffee worldwide. Precise management of coffee crops involves collecting crop attributes (characteristics of the soil and the plant), mapping, and applying inputs according to the plants' needs. This differentiated management is precision coffee growing and it stands out for its increased yield and sustainability. RESULTS: This research aimed to predict yield in coffee plantations by applying machine learning methodologies to soil and plant attributes. The data were obtained in a field of 54.6 ha during two consecutive seasons, applying varied fertilization rates in accordance with the recommendations of soil attribute maps. Leaf analysis maps also were monitored with the aim of establishing a correlation between input parameters and yield prediction. The machine-learning models obtained from these data predicted coffee yield efficiently. The best model demonstrated predictive fit results with a Pearson correlation of 0.86. Soil chemical attributes did not interfere with the prediction models, indicating that this analysis can be dispensed with when applying these models. CONCLUSION: These findings have important implications for optimizing coffee management and cultivation, providing valuable insights for producers and researchers interested in maximizing yield using precision agriculture. © 2024 Society of Chemical Industry.


Asunto(s)
Coffea , Aprendizaje Automático , Hojas de la Planta , Suelo , Suelo/química , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Coffea/química , Coffea/crecimiento & desarrollo , Café/química , Agricultura/métodos , Producción de Cultivos/métodos
20.
Plant Physiol Biochem ; 207: 108327, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38271860

RESUMEN

Triclosan has been extensively used as a preservative in cosmetics and personal care products. However, its accumulation represents a real environmental threat. Thus, its phytotoxic impact needs more consideration. Our study was conducted to highlight the phytotoxic effect of triclosan on the growth, ROS homeostasis, and detoxification metabolism of two different plant species i.e., legumes (Glycine max) and grass (Avena sativa). Moreover, we investigated the potentiality of plant growth-promoting bacteria (ST-PGPB) in mitigating the phytotoxic effect of triclosan. Triclosan induced biomass (fresh and dry weights) reduction in both plants, but to a higher extent in oats. This decline was associated with a noticeable increment in the oxidative damage (e.g., MDA and H2O2) and detoxification metabolites such as metallothionein (MTC), phytochelatins (PCs), and glutathione-S-transferase (GST). This elevation was associated with a remarkable reduction in both enzymatic and non-enzymatic antioxidants. On the other hand, the bioactive strain of ST-PGPB, Salinicoccus sp. JzA1 significantly alleviated the harmful effect of triclosan on both soybean and oat plants by enhancing their biomass, photosynthesis, as well as levels of minerals (K, Ca, P, Mn, and Zn). In parallel, a striking quenching in oxidative damage and an obvious improvement in non-enzymatic (polyphenols, tocopherols, flavonoids) and enzymatic antioxidants were observed. Furthermore, Salinicoccus sp. JzA1 augmented the detoxification metabolism by enhancing the levels of phytochelatins, metallothionein, and glutathione-S-transferase (GST) activity in a species-specific manner which is more apparent in soybean rather than in oat plants. To this end, stress mitigating impact of Salinicoccus sp. JzA1 provides a basis to improve the resilience of crop species under cosmetics and personal care products toxicity.


Asunto(s)
Cosméticos , Triclosán , Avena/metabolismo , Triclosán/metabolismo , Triclosán/toxicidad , Glycine max , Especies Reactivas de Oxígeno/metabolismo , Fitoquelatinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Plantas/metabolismo , Homeostasis , Cosméticos/metabolismo , Cosméticos/farmacología , Metalotioneína/metabolismo , Transferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...