Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Imaging ; 22(1): 63, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36397143

RESUMEN

BACKGROUND: Advances in molecular diagnostics accomplished the discovery of two malignant glioma entities harboring alterations in the H3 histone: diffuse midline glioma, H3 K27-altered and diffuse hemispheric glioma, H3 G34-mutant. Radiogenomics research, which aims to correlate tumor imaging features with genotypes, has not comprehensively examined histone-altered gliomas (HAG). The aim of this research was to synthesize the current published data on imaging features associated with HAG. METHODS: A systematic search was performed in March 2022 using PubMed and the Cochrane Library, identifying studies on the imaging features associated with H3 K27-altered and/or H3 G34-mutant gliomas. RESULTS: Forty-seven studies fulfilled the inclusion criteria, the majority on H3 K27-altered gliomas. Just under half (21/47) were case reports or short series, the remainder being diagnostic accuracy studies. Despite heterogeneous methodology, some themes emerged. In particular, enhancement of H3 K27M-altered gliomas is variable and can be less than expected given their highly malignant behavior. Low apparent diffusion coefficient values have been suggested as a biomarker of H3 K27-alteration, but high values do not exclude this genotype. Promising correlations between high relative cerebral blood volume values and H3 K27-alteration require further validation. Limited data on H3 G34-mutant gliomas suggest some morphologic overlap with 1p/19q-codeleted oligodendrogliomas. CONCLUSIONS: The existing data are limited, especially for H3 G34-mutant gliomas and artificial intelligence techniques. Current evidence indicates that imaging-based predictions of HAG are insufficient to replace histological assessment. In particular, H3 K27-altered gliomas should be considered when occurring in typical midline locations irrespective of enhancement characteristics.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Inteligencia Artificial , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/genética , Histonas/genética , Mutación
2.
BJR Open ; 2(1): 20200009, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178973

RESUMEN

Inaccurate assessment of surveillance imaging to assess response to glioma therapy may have life-changing consequences. Varied management plans including chemotherapy, radiotherapy or immunotherapy may all contribute to heterogeneous post-treatment appearances and the overlap between the morphological features of pseudoprogression, pseudoresponse and radiation necrosis can make their discrimination very challenging. Therefore, there has been a drive to develop objective strategies for post-treatment assessment of brain gliomas. This review discusses the most important of these approaches such as the RANO "Response Assessment in Neuro-Oncology", iRANO "Immunotherapy Response Assessment in Neuro-Oncology" and RAPNO "Response Assessment in Paediatric Neuro-Oncology" models. In addition to these systematic approaches for glioma surveillance, the relatively limited information provided by conventional imaging modalities alone has motivated the development of novel advanced magnetic resonance (MR) and metabolic imaging methods for further discrimination between viable tumour and treatment induced changes. Multiple clinical trials and meta-analyses have investigated the diagnostic performance of these novel techniques in the follow up of brain gliomas, including both single modality descriptive studies and comparative imaging assessment. In this manuscript, we review the literature and discuss the promises and pitfalls of frequently studied modalities in glioma surveillance imaging, including MR perfusion, MR diffusion and MR spectroscopy. In addition, we evaluate other promising MR techniques such as chemical exchange saturation transfer as well as fludeoxyglucose and non-FDG positron emission tomography techniques.

3.
Neuroradiology ; 62(7): 791-802, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32367349

RESUMEN

PURPOSE: We aim to illustrate the diagnostic performance of diffusional kurtosis imaging (DKI) in the diagnosis of gliomas. METHODS: A review protocol was developed according to the (PRISMA-P) checklist, registered in the international prospective register of systematic reviews (PROSPERO) and published. A literature search in 4 databases was performed using the keywords 'glioma' and 'diffusional kurtosis'. After applying a robust inclusion/exclusion criteria, included articles were independently evaluated according to the QUADAS-2 tool and data extraction was done. Reported sensitivities and specificities were used to construct 2 × 2 tables and paired forest plots using the Review Manager (RevMan®) software. A random-effect model was pursued using the hierarchical summary receiver operator characteristics. RESULTS: A total of 216 hits were retrieved. Considering duplicates and inclusion criteria, 23 articles were eligible for full-text reading. Ultimately, 19 studies were eligible for final inclusion. The quality assessment revealed 9 studies with low risk of bias in the 4 domains. Using a bivariate random-effect model for data synthesis, summary ROC curve showed a pooled area under the curve (AUC) of 0.92 and estimated sensitivity of 0.87 (95% CI 0.78-0.92) in high-/low-grade gliomas' differentiation. A mean difference in mean kurtosis (MK) value between HGG and LGG of 0.22 (95% CI 0.25-0.19) was illustrated (p value = 0.0014) with moderate heterogeneity (I2 = 73.8%). CONCLUSION: DKI shows good diagnostic accuracy in the differentiation of high- and low-grade gliomas further supporting its potential role in clinical practice. Further exploration of DKI in differentiating IDH status and in characterising non-glioma CNS tumours is however needed.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Imagen de Difusión Tensora/métodos , Glioma/diagnóstico por imagen , Glioma/patología , Diagnóstico Diferencial , Humanos , Interpretación de Imagen Asistida por Computador , Clasificación del Tumor
4.
BMJ Open ; 8(12): e025123, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30552282

RESUMEN

INTRODUCTION: Central nervous system (CNS) gliomas are the most common primary intra-axial brain tumours and pose variable treatment response according to their grade, therefore, precise staging is mandatory. Histopathological analysis of surgical tumour samples is still deemed as the state-of-the-art staging technique for gliomas due to the moderate specificity of the available non-invasive imaging modalities. A recently evolved analysis of the tissue water diffusion properties, known as diffusional kurtosis imaging (DKI), is a dimensionless metric, which quantifies water molecules' degree of non-Gaussian diffusion, hence reflects tissue microenvironment's complexity by means of non-invasive diffusion-weighted MRI acquisitions. The objective of this systematic review and meta-analysis is to explore the performance of DKI in the presurgical grading of gliomas, both regarding the differentiation between high-grade and low-grade gliomas as well as the discrimination between gliomas and other intra-axial brain tumours. METHODS AND ANALYSIS: We will search PubMed, Medline via Ovid, Embase and Scopus in July 2018 for research studies published between January 1990 and June 2018 with no language restrictions, which have reported on the performance of DKI in diagnosing CNS gliomas. Robust inclusion/exclusion criteria will be applied for selection of eligible articles. Two authors will separately perform quality assessment according to the quality assessment of diagnostic accuracy studies-2 tool. Data will be extracted in a predesigned spreadsheet. A meta-analysis will be held using a random-effects model if substantial statistical heterogeneity is expected. The heterogeneity of studies will be evaluated, and sensitivity analyses will be conducted according to individual study quality. ETHICS AND DISSEMINATION: This work will be based on published studies; hence, it does not require institutional review board approval or ethics clearance. The results will be published in peer-reviewed journals. PROSPERO REGISTRATION NUMBER: CRD42018099192.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Imagen de Difusión por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Glioma/patología , Metaanálisis como Asunto , Revisiones Sistemáticas como Asunto , Diagnóstico Diferencial , Humanos , Clasificación del Tumor , Estadificación de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...