Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1384326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863491

RESUMEN

Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.

2.
Front Microbiol ; 15: 1381302, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832112

RESUMEN

Biosynthetic metals have attracted global attention because of their safety, affordability, and environmental friendliness. As a consequence, the cell-free filtrate (CFF) of Dill leaf-derived endophytic fungus Aspergillus luchuensis was employed for the extracellularly synthesis silver nanoparticles (AgNPs). A reddish-brown color shift confirmed that AgNPs were successfully produced. The obtained AgNPs were characterized by UV-Vis (ultraviolet-visible spectroscopy), Transmission electron microscopy (TEM), FTIR, EDX, and zeta potential. Results demonstrated the creation of crystalline AgNPs with a spherical shape at 427.81 nm in the UV-Vis spectrum, and size ranged from 16 to 18 nm as observed by TEM. Additionally, the biogenic AgNPs had a promising antibacterial activity versus multidrug-resistant bacteria, notably, S. aureus, E. coli, and S. typhi. The highest growth reduction was recorded in the case of E. coli. Furthermore, the biosynthesized AgNPs demonstrated potent antifungal potential versus a variety of harmful fungi. The maximum growth inhibition was evaluated from A. brasinsilles, followed by C. albicans as compared to cell-free extract and AgNO3. In addition, data revealed that AgNPs possess powerful antioxidant activity, and their ability to scavenge radicals increased from 33.0 to 85.1% with an increment in their concentration from 3.9 to 1,000 µg/mL. Furthermore, data showed that AgNPs displayed high catalytic activity of safranin under light irradiation. The maximum decolorization percentage (100%) was observed after 6 h. Besides, the biosynthesized AgNPs showed high insecticidal potential against 3rd larval instar of Culex pipiens. Taken together, data suggested that endophytic fungus, A. luchuensis, is an attractive candidate as an environmentally sustainable and friendly fungal nanofactory.

3.
BMC Vet Res ; 20(1): 250, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849855

RESUMEN

BACKGROUND: Buffalo spermatozoa have a distinct membrane structure that makes them more vulnerable to cryopreservation, resulting in lower-quality post-thawed sperm. This decreases the success rate of artificial insemination in buffaloes. Understanding and addressing these specific vulnerabilities are essential for improving reproductive techniques in buffalo populations. The properties of cryopreserved buffalo bull semen were examined in this study regarding the impact of adding autologous platelet-rich plasma (PRP) to OptiXcell® or Tris egg yolk-based extenders. Ten buffalo bulls were used to collect semen. Each bull's ejaculate was separated into two main equal amounts, each of which was then diluted with either OptiXcell® or Tris egg yolk-based extender, supplemented with various PRP concentrations (5%, 10%, and 15%), and the control (0%), before being cryopreserved according to established protocols. Following equilibration and thawing, the quality and functionality of the sperm were evaluated, along with the antioxidant enzyme activities (GSH and TAC), malondialdehyde (MDA) content, and in vivo fertilization rate of the thawed semen. RESULTS: All PRP concentrations in both extenders, particularly 10% PRP, improved the quality and functionality of the sperm in both equilibrated and frozen-thawed semen. Additionally, the antioxidant enzyme activities in both extenders were higher in the PRP-supplemented groups compared to the control group in thawed semen (P < 0.05). All post-thaw sperm quality, antioxidant enzyme activities, and functionality aside from DNA integrity were higher (P < 0.05) in the PRP-supplemented OptiXcell® than in the PRP-supplemented Tris egg yolk-based extender. The fertility of cryopreserved semen in the extenders supplemented with 10% and 15% PRP increased (P < 0.05) significantly more than that of the control extenders, with 10% PRP being the optimum concentration in OptiXcell® (80%) compared to that of Tris egg yolk-based extender (66.67%) and control of two extenders (53.33% and 46.67%, respectively). CONCLUSIONS: Even though autologous PRP-supplemented extenders have a protective impact on equilibrated and cryopreserved semen, 10% PRP-supplemented OptiXcell® extenders are more effective at preserving post-thaw semen quality, functionality, and antioxidant capacity, which increases the in vivo fertility of buffalo bulls.


Asunto(s)
Búfalos , Criopreservación , Plasma Rico en Plaquetas , Preservación de Semen , Animales , Masculino , Criopreservación/veterinaria , Criopreservación/métodos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Fertilidad , Yema de Huevo/química , Análisis de Semen/veterinaria , Crioprotectores/farmacología , Inseminación Artificial/veterinaria , Femenino , Semen , Espermatozoides/fisiología , Espermatozoides/efectos de los fármacos
4.
ACS Omega ; 9(22): 23949-23962, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854532

RESUMEN

Arthrospira platensis has been the subject of plentiful studies due to its purported health advantages; nevertheless, additional investigation is required to determine whether several chronic diseases may be treated or avoided with its nanoform. Therefore, we set out to examine A. platensis nanoparticles (SNPs) to protect against kidney impairment caused by Streptozotocin (STZ) in diabetic rats, precisely focusing on its effect and the cellular intracellular pathways involved. Male Wistar rats were assigned into four groups: Group 1 was set as control, comprising the normal rats; group 2 was administered SNPs (0.5 mg/kg BW, once/day) orally for 84 consecutive days; group 3, STZ-diabetic rats were injected with STZ (65 mg/kg BW); and group 4, in which the diabetic rats were treated with SNPs. After inducing diabetes in rats for 84 days, the animals were euthanized. The results disclosed that SNP treatment substantially (P < 0.05) improved the glucose and glycated hemoglobin levels (HbA1c %), insulin, C-peptide, and cystatin C deterioration in diabetic rats. Furthermore, SNP administration significantly lowered (P < 0.05) nitric oxide (NO) and malondialdehyde (MDA) levels in renal tissue and enhanced kidney function metrics, as well as improved the antioxidant capacity of the renal tissue. In addition, oral SNPs overcame the diabetic complications concerning diabetic nephropathy, indicated by downregulation and upregulation of apoptotic and antiapoptotic genes, respectively, along with prominent modulation of the antiangiogenic marker countenance level, improving kidney function. SNP modulated the nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 (NRF2/HO-1) pathways and inhibited the nuclear factor-κB (NF-κB) expression, strengthening the SNP pathways in alleviating diabetic nephropathy. The histopathology results corroborated the obtained biochemical and molecular observations, suggesting the therapeutic potential of SNPs in diabetic nephropathy via mechanisms other than its significant antioxidant and hypoglycemic effects, including modulation of antiangiogenic and inflammatory mediators and the NRF2/HO-1 pathways.

5.
World Neurosurg ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857866

RESUMEN

Astrocytoma are the most common adult brain tumor, with Glioblastoma being the deadliest neuro-related malignancy. Despite advances in oncology, the prognosis for Astrocytoma, especially Glioblastoma, remains poor, and tracking disease progression is challenging due to a lack of robust biomarkers. Genetic biomarkers, including microRNAs, cell-free DNA, circulating tumor DNA, circular RNA, and long non-coding RNA (lncRNA), can serve as potential diagnostic and therapeutic targets. In this review, we examine the existing literature, analyzing the various less established liquid and tumor genetic biomarkers and their potential to act as diagnostic, prognostic, and therapeutic targets. We highlight the clinical challenges and limitations in implementing liquid biopsy strategies in clinical practice. The article discusses the potential of liquid biopsies as valuable tools for personalized Astrocytoma management while emphasizing the need for standardized protocols and further advancements to establish their clinical utility and therapeutic application.

6.
Life Sci ; 349: 122671, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697279

RESUMEN

Nano carriers have gained more attention for their possible medical and technological applications. Tailored nanomaterials can transport medications efficiently to targeted areas and allow for sustained medication discharge, reducing undesirable toxicities while boosting curative effectiveness. Nonetheless, transitioning nanomedicines from experimental to therapeutic applications has proven difficult, so different pharmaceutical incorporation approaches in nano scaffolds are discussed. Then numerous types of nanobiomaterials implemented as carriers and their manufacturing techniques are explored. This article is also supported by various applications of nanobiomaterials in the biomedical field.


Asunto(s)
Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Humanos , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos/métodos , Animales , Nanoestructuras/química , Nanomedicina/métodos , Portadores de Fármacos/química , Andamios del Tejido/química
8.
Artículo en Inglés | MEDLINE | ID: mdl-38356017

RESUMEN

Phytase is crucial in enhancing the bioavailability and release of phosphorus and other nutrients bound to phytic acid, making them more bioavailable for animal absorption. This study was carried out to inspect the effect of supplementing low phosphorus (P) diet with di-calcium phosphate (DCP) and liquid phytase enzyme (LP), which contains 1500 FTU/kg, on growth performance, intestinal morphometry, proximate body chemical composition, blood profile, immunity status, liver mitochondrial enzyme activities, the expression response and economic returns of Nile tilapia (Oreochromis niloticus). Three triplicate groups of fish (initial weight 5.405 ± 0.045 g, N = 90) were fed on three different diets for 90 days. The first was a control diet with zero DCP; the second was a control diet supplemented with 0.71% DCP; the third was a control diet supplemented with 0.03% LP. The groups were designated as CG, DCP and LP, respectively. Results showed that LP induced considerable improvements (p < 0.05) in FBW, body weight gain, weight gain rate, specific growth rate, HIS, viscero-somatic index, spleen-somatic index, feed conversion ratio, blood parameters and the histomorphometry assessment of intestinal villi absorptive capacity, compared with the other groups. Also, whole-body protein and lipid contents pointedly (p < 0.05) increased by LP, compared with the DCP group. A positive response (p < 0.05) to the phytase enzyme was noted in complexes I, III and IV of the mitochondrial liver complex enzyme activity. Likewise, the relative gene expression levels of (GHr-1, IGF-1, FAS and LPL) were notably (p < 0.05) upregulated by phytase enzyme, associated with DCP and control groups. Further, phytase recorded the highest total return and profit percentage. It can be concluded that Nile tilapia benefits from using phytase enzyme 1500 FTU/kg at 0.03% without adding DCP in terms of good performance and profits.

9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 317-328, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37436496

RESUMEN

Acetaminophen (APAP), a widely used medication known for its pain-relieving and fever-reducing effects, can cause kidney failure if taken in excess. To investigate the potential protective effects of allicin (ALC) and/or omega-3 fatty acids (O3FA) against acetaminophen-induced kidney damage, a study was conducted using 49 rats divided into seven groups. The control group was given saline, while the other groups received ALC, O3FA, APAP, ALC + APAP, O3FA + APAP, or ALC + O3FA + APAP. After administering APAP, the rats showed decreased levels of total protein and albumin in their blood, along with increased levels of creatinine and urea. The concentration of reduced glutathione (GSH), as well as the activity of superoxide dismutase (SOD) and catalase (CAT), decreased, while the level of malondialdehyde (MDA) in the renal tissues increased. The activation of caspase-3 and HSP70 also suggested an impact on kidney histopathology. Overall, the study found that ALC and/or O3FA may have a protective impact against acetaminophen-induced kidney damage through their anti-inflammatory, anti-apoptotic, and antioxidant defense systems.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ácidos Grasos Omega-3 , Enfermedades Renales , Insuficiencia Renal , Ratas , Animales , Acetaminofén/toxicidad , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Riñón , Enfermedades Renales/inducido químicamente , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis , Hígado , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
10.
Ecotoxicol Environ Saf ; 270: 115841, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113799

RESUMEN

N-nitrosodiethylamine (ND) is an extremely toxic unavoidable environmental contaminant. CopperII-albumin (CuAB) complex, a newly developed Cu complex, showed antioxidant and anti-inflammatory potential. Hereby, we explored the plausible neuroprotective role of CuAB complex toward ND-evoked neurotoxicity in mice. Twenty-four male mice were sorted into 4 groups (6 mice each). Control group, mice were administered oral distilled water; and CuAB group, mice received CuAB complex at a dose of 817 µg/kg orally, three times weekly. In ND group, ND was given intraperitoneally (50 mg/kg body weight, once weekly for 6 w). CuAB+ND group, mice were administered a combination of CuAB and ND. The brain was quickly extracted upon completion of the experimental protocol for the evaluation of the oxidative/antioxidative markers, inflammatory cytokines, and histopathological examination. Oxidative stress was induced after ND exposure indicated by a reduction in GSH and SOD1 level, with increased MDA level. In addition, decreased expression of SOD1 proteins, Nrf2, and 5-HT mRNA expression levels were noticed. An apoptotic cascade has also been elicited, evidenced by overexpression of Cyt c, Cl. Casp 3. In addition, increased regulation of proinflammatory genes (TNF-α, IL-6, iNOS, Casp1, and NF-κB (p65/p50); besides, increment of protein expression of P-IKBα and reduced expression of IKBα. Pretreatment with CuAB complex significantly ameliorated ND neuronal damage. Our results recommend CuAB complex supplementation because it exerts neuroprotective effects against ND-induced toxicity.


Asunto(s)
Cobre , Síndromes de Neurotoxicidad , Ratones , Masculino , Animales , Cobre/toxicidad , Dietilnitrosamina/farmacología , Superóxido Dismutasa-1/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Estrés Oxidativo , Transducción de Señal , Antioxidantes/farmacología , Antioxidantes/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control , Factor 2 Relacionado con NF-E2/metabolismo
11.
Front Pharmacol ; 14: 1293230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155907

RESUMEN

Introduction: Ionizing radiation (IR) is effectively used in the treatment of oral malignancies; however, it might also significantly harm the surrounding tissues. Whey protein isolate (WP) is a protein derived from milk that exhibits a wide range of bioactivities. Therefore, the present research aimed to delineate the mitigating impact of WP against gamma irradiation-induced lingual damage. Methods: Rats were randomized into 5 groups: Control (saline, orally, 14 days), WP (WP; 0.5 g/kg b. w., orally, 14 days), IR (saline, orally, 14 days, exposed to 6 and 3 Gy on days 4 and 6, respectively), WP+IR (WP was given orally for 14 days before and after IR exposure; exposed to 6 and 3 Gy on days 4 and 6, respectively), and IR+WP (WP, orally, started 24 h after 1st IR exposure till the end of the experiment) groups. Samples were collected at two-time intervals (on the 7th and 14th days). Results and Discussion: Oxidative stress was stimulated upon IR exposure in tongue, indicated by boosted malondialdehyde (MDA) level, along with a decrease in the total antioxidant capacity (TAC) level, superoxide dismutase (SOD), and catalase (CAT) activities. Additionally, IR exposure depicted an increase of serum IgE, inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, along with overexpression mRNA levels of nuclear factor kappa-B transcription factor/p65 (NF-κB/p65), and down-regulation of nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase (HO-1) mRNA levels in tongue tissue. Moreover, IR triggered alterations in lingual histological architecture. The antioxidant and anti-inflammatory properties of WP mitigated oxidative damage, inflammation, and desquamation that were brought on following IR exposure. The protective administration of WP markedly decreases IR-induced lingual harm compared to the mitigation protocol. Our findings recommend WP supplements to the diets of cancer patients undergoing IR that might aid radioprotective effects.

12.
BMC Womens Health ; 23(1): 593, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37950174

RESUMEN

BACKGROUND: Body image is mainly determined by biological, social, psychological and cultural factors thus it is a multifaceted vigorous construct. Body image is an essential aspect of girls' self-definition and individual identity. Excessive concern about body image and body image misconceptions leads to dissatisfaction, disturbed eating patterns, affecting the nutritional status and also leading to depression and anxiety disorder. METHODS: This is a descriptive cross-sectional university-based study aiming to investigate body image dissatisfaction and its relation to BMI among female medical students at the University of Khartoum, faculty of medicine. The study was carried out between December 2020 and January 2021. Simple random sampling was applied and a two-sectioned questionnaire was used. The first part consisted of socio-demographic data and the second part contained questions to assess body image the data was. A total of 277 participants were enrolled in the study. Data was analyzed using SPSS version 20. RESULTS: We enrolled 277 female medical students the majority of participants (53%) were considered of normal weight according to BMI, 7% considered obese, and 18% underweight. Large number of participants thought that they are not in the ideal weight according to their height (62%). (21% to 17%) of participants always feel pressure from people or society to get to a certain weight. With respect to attitude towards weight, (29%) of participants always wear clothes that don't reveal their body shape, (35%) of them always tend to wear clothes that hide their excess weight. CONCLUSIONS: The study concluded that participants who were overweight, obese or underweight have significant increase risk for poor body image perception with odd ratio of 39, 11, and 59 respectively. Thus early and proper interventions are necessary to circumvent the impact and future repercussion of body image distortion.


Asunto(s)
Insatisfacción Corporal , Estudiantes de Medicina , Humanos , Femenino , Índice de Masa Corporal , Delgadez/epidemiología , Estudios Transversales , Sudán , Imagen Corporal/psicología , Obesidad
13.
Drug Des Devel Ther ; 17: 2985-3021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37789970

RESUMEN

Introducing dental polymers has accelerated biotechnological research, advancing tissue engineering, biomaterials development, and drug delivery. Polymers have been utilized effectively in dentistry to build dentures and orthodontic equipment and are key components in the composition of numerous restorative materials. Furthermore, dental polymers have the potential to be employed for medication administration and tissue regeneration. To analyze the influence of polymer-based investigations on practical medical trials, it is required to evaluate the research undertaken in this sector. The present review aims to gather evidence on polymer applications in dental, oral, and maxillofacial reconstruction.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Materiales Biocompatibles/farmacología , Sistemas de Liberación de Medicamentos , Polímeros
14.
Int J Nanomedicine ; 18: 5591-5606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808455

RESUMEN

Background: Loss of normal function is an inevitable effect of aging. Several factors contribute to the aging process, including cellular senescence and oxidative stress. Methods: We investigate how Arthrospira platensis Nanoparticles (NSP) protect against aging injury induced by d-galactose (D-gal) in the rat. So, we subcutaneously (S/C) injected D-gal at 200 mg/kg BW to see if Arthrospira platensis Nanoparticles (NSP) might protect against the oxidative changes generated by D-gal. NSP (0.5 mg/kg body weight once daily by gastric gavage) was given to all groups apart from the control and D-gal groups. The d-gal + NSP group was supplemented with 200 mg of D-gal per kg BW once a day and NSP 0.5 mg/kg BW given orally for 45 days. Biochemical, mRNA expression, and histological investigations of brain tissues were used to evaluate the oxidative alterations caused by d-gal and the protective role of NSP. Results: Our data demonstrated that d-gal was causing significant reductions in relative brain and body weight with increased malondialdehyde (MDA) and redox oxygen species (ROS) levels and increases in serum creatine phosphokinase (CPK) and creatine phosphokinase isoenzyme BB (CPK-BB) with marked decreases in the level of antioxidant enzyme activity in the brain and acetylcholinesterase activity augmented with a phosphorylated H2A histone family member X (γ-H2AX) level increased. The D-gal group had considerably higher phosphorylated p38 mitogen-activated protein kinases (P38MAPK) and C-Jun N-terminal (JNK) kinases. The d-gal administration stimulates the apoptotic gene expression by downregulating the brain superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid 2-related factor 2 (Nrf2). The NSP administration saved these parameters in the direction of the control. The brain histopathologic and immunohistochemistry analysis findings support our findings on NSP's protective role. Conclusion: The NSP may be a promising natural protective compound that can prevent aging and preserve health.


Asunto(s)
Antioxidantes , Galactosa , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Acetilcolinesterasa/metabolismo , Envejecimiento , Estrés Oxidativo , Antiinflamatorios/farmacología , Encéfalo/metabolismo , Oxidación-Reducción , Peso Corporal , Creatina Quinasa/metabolismo
15.
Toxics ; 11(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37755794

RESUMEN

Melamine (ML) is a common environmental contaminant, commonly used in food fraud, representing a serious health hazard and jeopardizing human and animal health. Recently, nootkatone (NK), a naturally occurring sesquiterpenoid, has garnered considerable attention due to its potential therapeutic advantages. We investigated the potential mechanisms underlying the protective effects of NK against ML-induced liver injury in rats. Five groups were utilized: control, ML, NK10, ML-NK5, and ML-NK10. ML induced substantial hepatotoxicity, including considerable alterations in biochemical parameters and histology. The oxidative distress triggered by ML increased the generation of malondialdehyde (MDA) and nitric oxide (NO) and decreased levels of reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities. In addition, decreased expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased nuclear factor kappa beta (NF-κB) expression levels were observed in hepatocytes, which indicated the occurrence of inflammatory changes following ML exposure. These alterations were alleviated by NK supplementation in a dose-dependent manner. The data revealed that the favorable effects of NK were attributed, at least in part, to its antioxidant and anti-inflammatory properties. Moreover, our results were supported by molecular docking studies that revealed a good fit and interactions between NK and antioxidant enzymes. Thus, the current study demonstrated that NK is a potential new food additive for the prevention or treatment of ML-induced toxicity.

16.
Biomed Pharmacother ; 165: 115133, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37454594

RESUMEN

Melamine (ML), a chemical substance of high nitrogen content, is used as a food adulterant. Former evidences implied that ML could induce a variety of toxic effects including neurotoxicity and cognitive impairment. Therefore, the aim of this study was to delineate the protective effect of the nootkatone (NK) against ML-induced neural adverse effects. Rats were orally pretreated with NK (5 and 10 mg/kg) prior to the oral administration of ML (700 mg/kg) for a period of 28 days. Our findings unveiled remarkable alleviating effect of NK on MK-induced neurobehavioral disturbance in open field test. Furthermore, NK lessened ML-caused increases in the acetylcholine esterase level in the brain tissue of exposed rats. NK also decreased the neural oxidative stress as represented by elevated levels of SOD, CAT, and GSH along with decreased MDA and NO levels. Upregulated mRNA expression levels of neural NRF-2 and HO-1 were noticed after NK administration. Remarkable anti-inflammatory impact was prominent by decreased neural IL-1ß, and TNF-α along with downregulated NF-κB and TLR-4 gene expression levels in NK-treated rats. Noteworthily, pre-treatment with NK decreased the immune reaction of RAGE and HMGB-1 induced by oral ML exposure. Brain histological examination validated the obtained biochemical and molecular results. To sum up, these outcomes reveal that NK successfully alleviated the neural damage induced by ML via blocking of oxidative stress, and inflammatory signaling pathways. Consequently, our study may suggest NK as a new effective therapeutic supplement for treatment of ML-mediated neurotoxicity in rats via inhibition of HMGB-1-RAGE/TLR-4/NF-κB.


Asunto(s)
FN-kappa B , Sesquiterpenos , Ratas , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Sesquiterpenos/farmacología , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacología
17.
Ecotoxicol Environ Saf ; 262: 115194, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37385018

RESUMEN

Aflatoxin B1 (AFB1) is a common environmental pollutant that poses a major hazard to both humans and animals. Acacia senegal (Gum) is well-known for having antioxidant and anti-inflammatory bioactive compounds. Our study aimed to scout the nephroprotective effects of Acacia gum (Gum) against AFB1-induced renal damage. Four groups of rats were designed: Control, Gum (7.5 mg/kg), AFB1 (200 µg/kg b.w) and AFB1-Gum, rats were co-treated with both Gum and AFB1. Gas chromatography-mass spectrometry (GC/MS) analysis was done to determine the phytochemical constituents in Gum. AFB1 triggered profound alterations in kidney function parameters (urea, creatinine, uric acid, and alkaline phosphatase) and renal histological architecture. Additionally, AFB1 exposure evoked up-regulation of mRNA expression levels of inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor α (TNFα), inducible nitric oxide synthase (iNOS), and nuclear factor kB p65 (NF-κB/P65) in renal tissue. The oxidative distress and apoptotic cascade are also instigated by AFB1 intoxication as depicted in down-regulated protein expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) and superoxide dismutase type 1 (SOD1) along with upregulation of cytochrome c (Cyto c), and cleaved Caspase3 (Casp3-17 and 19) in renal tissue. In conclusion, current study obviously confirms the alleviating effects of Gum supplementation against AFB1-induced renal dysfunction, oxidative harm, inflammation, and cell death. These mitigating effects are suggested to be attributed to Gum's antioxidant and anti-inflammatory activities. Our results recommend Gum supplementation as add-on agents to food that might aid in protection from AFB1-induced nephrotoxicity.

18.
J Enzyme Inhib Med Chem ; 38(1): 2202358, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37096560

RESUMEN

Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) protein tyrosine kinases co-expressed in various cancers such as ovarian, breast, colon, and prostate subtypes. Herein, new TAK-285 derivatives (9a-h) were synthesised, characterised, and biologically evaluated as dual EGFR/HER2 inhibitors. Compound 9f exhibited IC50 values of 2.3 nM over EGFR and 234 nM over HER2, which is 38-fold of staurosporine and 10-fold of TAK-285 over EGFR. Compound 9f also showed high selectivity profile when tested over a small kinase panel. Compounds 9a-h showed IC50 values in the range of 1.0-7.3 nM and 0.8-2.8 nM against PC3 and 22RV1 prostate carcinoma cell lines, respectively. Cell cycle analysis, apoptotic induction, molecular docking, dynamics, and MM-GBSA studies confirmed the plausible mechanism(s) of compound 9f as a potent EGFR/HER2 dual inhibitor with an effective antiproliferative action against prostate carcinoma.


Asunto(s)
Antineoplásicos , Carcinoma , Neoplasias de la Próstata , Masculino , Humanos , Simulación del Acoplamiento Molecular , Próstata , Línea Celular Tumoral , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Receptores ErbB
19.
Toxics ; 11(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36977038

RESUMEN

Doxorubicin (DOX) is a frequent chemotherapeutic drug used to treat various malignant tumors. One of the key factors that diminish its therapeutic importance is DOX-induced nephrotoxicity. The first-line oral antidiabetic drug is metformin (Met), which also has antioxidant properties. The purpose of our study was to investigate the underlying molecular mechanisms for the potential protective effects of Met on DOX-triggered nephrotoxicity. Four animal groups were assigned as follows; animals received vehicle (control group), 200 mg/kg Met (Met group), DOX 15 mg/kg DOX (DOX group), and a combination of DOX and Met (DOX/Met group). Our results demonstrated that DOX administration caused marked histological alterations of widespread inflammation and tubular degeneration. Notably, the DOX-induced dramatic up-regulation of the nuclear factor-kappa B/P65 (NF-κB/P65), microtubule-associated protein light chain 3B (LC3B), neutrophil gelatinase-associated lipocalin (NGAL), interleukin-1beta (IL-1ß), 8-hydroxy-2' -deoxyguanosine (8-OHdG), and Beclin-1 in renal tissue. A marked increase in the malondialdehyde (MDA) tissue level and a decrease in the total antioxidant capacity (TAC) were also recorded in DOX-exposed animals. Interestingly, Met could minimize all histopathological changes as well as the disruptions caused by DOX in the aforementioned measures. Thus, Met provided a workable method for suppressing the nephrotoxicity that occurred during the DOX regimen via the deactivation of the Beclin-1/LC3B pathway.

20.
Biomed Pharmacother ; 158: 114131, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36538861

RESUMEN

Although the currently available pharmacological assays can cure most pathological disorders, they have limited therapeutic value in relieving certain disorders like myocardial infarct, peripheral vascular disease, amputated limbs, or organ failure (e.g. renal failure). Pilot studies to overcome such problems using regenerative medicine (RM) delivered promising data. Comprehensive investigations of RM in zebrafish or reptilians are necessary for better understanding. However, the precise mechanisms remain poorly understood despite the tremendous amount of data obtained using the zebrafish model investigating the exact mechanisms behind their regenerative capability. Indeed, understanding such mechanisms and their application to humans can save millions of lives from dying due to potentially life-threatening events. Recent studies have launched a revolution in replacing damaged human organs via different approaches in the last few decades. The newly established branch of medicine (known as Regenerative Medicine aims to enhance natural repair mechanisms. This can be done through the application of several advanced broad-spectrum technologies such as organ transplantation, tissue engineering, and application of Scaffolds technology (support vascularization using an extracellular matrix), stem cell therapy, miRNA treatment, development of 3D mini-organs (organoids), and the construction of artificial tissues using nanomedicine and 3D bio-printers. Moreover, in the next few decades, revolutionary approaches in regenerative medicine will be applied based on artificial intelligence and wireless data exchange, soft intelligence biomaterials, nanorobotics, and even living robotics capable of self-repair. The present work presents a comprehensive overview that summarizes the new and future advances in the field of RM.


Asunto(s)
Medicina Regenerativa , Pez Cebra , Animales , Humanos , Inteligencia Artificial , Ingeniería de Tejidos , Materiales Biocompatibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA