Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(21): 23001-23012, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38826538

RESUMEN

The literature does not provide any "high-performance thin-layer chromatographic (HPTLC)" techniques for the determination of a novel antidiabetic medicine, ertugliflozin (ERZ). Additionally, there are not many environmentally friendly analytical methods for ERZ measurement in the literature. A rapid, sensitive, and eco-friendly reversed-phase-HPTLC (RP-HPTLC) method was designed and validated in an attempt to analyze ERZ in marketed pharmaceutical tablets more precisely, accurately, and sustainably over the traditional normal-phase HPTLC (NP-HPTLC) method. The stationary phases used in the NP- and RP-HPTLC procedures were silica gel 60 NP-18F254S and 60 RP-18F254S plates, respectively. For NP-HPTLC, a chloroform/methanol (85:15 v/v) mobile phase was used. However, ethanol-water (80:20 v/v) was the preferred method for RP-HPTLC. Four distinct methodologies, including the National Environmental Method Index (NEMI), Analytical Eco-Scale (AES), ChlorTox, and Analytical GREEnness (AGREE) approaches, were used to evaluate the greenness of both procedures. For both approaches, ERZ detection was carried out at 199 nm. Using the NP- and RP-HPTLC techniques, the ERZ measurement was linear in the 50-600 and 25-1200 ng/band ranges. The RP-HPTLC method was found to be more robust, accurate, precise, linear, sensitive, and eco-friendly compared to the NP-HPTLC approach. The results of four greenness tools demonstrated that the RP strategy was greener than the NP strategy and all other reported HPLC techniques. The fact that both techniques can assess ERZ when its degradation products are present implies that they both have characteristics that point to stability-indicating features. 87.41 and 99.28%, respectively, were the assay results for ERZ in commercial tablets when utilizing the NP and RP procedures. Based on several validation and greenness metrics, it was determined that the RP-HPTLC approach was better than the NP-HPTLC method. As a result, it is possible to determine ERZ in pharmaceutical products using the RP-HPTLC approach.

2.
RSC Adv ; 14(16): 11388-11399, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38595719

RESUMEN

Caroxylon volkensii is a wild desert plant of the family Amaranthaceae. This study represents the first report of the metabolomic profiling of C. volkensii by liquid chromatography quadrupole-time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS). The dereplication study of its secondary metabolites led to the characterization of 66 known compounds. These compounds include catecholamines, tyramine derivatives, phenolic acids, triterpenoids, flavonoids, and others. A new tyramine derivative, alongside other known compounds, was reported for the first time in the Amaranthaceae family. The new derivative and the first-reported compounds were putatively identified through MS/MS fragmentation data. Given the notorious taxonomical challenges within the genus Salsola, to which C. volkensii previously belonged, our study could offer a valuable insight into its chemical fingerprint and phylogenetic relationship to different Salsola species. The antibacterial potential of C. volkensii methanolic extract (CVM) against Pseudomonas aeruginosa was screened. The minimum inhibitory concentration (MIC) of CVM ranged from 32 to 256 µg mL-1. The anti-quorum sensing potential of CVM resulted in a decrease in the percentage of strong and moderate biofilm-forming isolates from 47.83% to 17.39%. It revealed a concentration-dependent inhibitory activity on violacein formation by Chromobacterium violaceum. Moreover, CVM exhibited an in vivo protective potential against the killing capacity of P. aeruginosa isolates. A molecular docking study revealed that the quorum-sensing inhibitory effect of CVM can be attributed to the binding of tyramine conjugates, ethyl-p-digallate, and isorhamnetin to the transcriptional global activator LasR.

3.
ACS Omega ; 8(42): 39928-39935, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901579

RESUMEN

Suvorexant (SUV) is a new sedative/hypnotic medicine that is recommended to treat insomnia. It is an important medicine from a forensic point of view due to its sedative/hypnotic and depressant effects. To the best of our knowledge, high-performance thin-layer chromatography (HPTLC) bioanalytical methods have not been published to measure SUV in human urine and pharmaceutical samples. Accordingly, this study was designed and validated a sensitive and rapid bioanalytical HPTLC method to determine SUV in human urine samples for the very first time. The densitometric measurement of SUV and the internal standard (IS; sildenafil) was performed on glass-coated silica gel normal-phase-60F254S TLC plates using a mixture of chloroform and methanol (97.5:2.5 v/v) as the eluent system. Both the SUV and IS were detected at a wavelength of 254 nm. Both analytes were extracted using the protein precipitation technique utilizing methanol as the solvent. For the IS and SUV, the Rf values were 0.09 and 0.45, respectively. The proposed bioanalytical method for SUV was linear in the 50-1600 ng/band range. The current bioanalytical technique was linear, precise (% RSD = 3.28-4.20), accurate (% recovery = 97.58-103.80), robust (% recovery = 95.31-102.34 and % RSD = 2.81-3.15), rapid, and sensitive (LOD = 3.73 ng/band and LOQ = 11.20 ng/band). These findings suggested that the current bioanalytical method can be regularly used to determine SUV in wide varieties of urine samples.

4.
ACS Omega ; 8(33): 30655-30664, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636909

RESUMEN

High-performance thin-layer chromatographic (HPTLC) assays for pomalidomide (PMD) measurement are lacking in the published database. Furthermore, eco-friendly stability-indicating analytical assays for PMD measurement are also lacking in the published database. In order to detect PMD in commercial products more accurately and sustainably than the conventional normal-phase HPTLC (NP-HPTLC) assay, an effort was made to design and verify a sensitive and eco-friendly reversed-phase HPTLC (RP-HPTLC) assay. The silica gel 60 NP-18F254S and 60 RP-18F254S plates were used as the stationary phases for NP-HPTLC and RP-HPTLC methods, respectively. The solvent system for NP-HPTLC was chloroform-methanol (90:10 v/v). However, the solvent system for RP-HPTLC was ethanol-water (75:25 v/v). The greenness scores for both assays were measured by AGREE approach. PMD measurement was performed for both assays at 372 nm. In the 50-600 and 20-1000 ng/band ranges, the NP-HPTLC and RP-HPTLC methods were linear for PMD measurement. The RP-HPTLC assay was superior to the NP-HPTLC method for measuring PMD in terms of sensitivity, accuracy, precision, and robustness. The ability of both methods to identify PMD in the presence of its degradation products suggests that both methods have stability-indicating features. When employing the NP-HPTLC and RP-HPTLC assays, respectively, the assay for PMD in commercial capsules was 88.68 and 98.83%. The AGREE scores for NP-HPTLC and RP-HPTLC assays were calculated to be 0.44 and 0.82, respectively, suggesting an outstanding greenness characteristic of the RP-HPTLC method than the NP-HPTLC method. The RP-HPTLC method was found to be superior to the NP-HPTLC method based on these findings. Therefore, the RP-HPTLC method could be successfully applied for the determination of PMD in pharmaceutical products.

5.
Molecules ; 28(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37110760

RESUMEN

Diverse secondary metabolites are biosynthesized by plants via various enzymatic cascades. These have the capacity to interact with various human receptors, particularly enzymes implicated in the etiology of several diseases. The n-hexane fraction of the whole plant extract of the wild edible plant, Launaea capitata (Spreng.) Dandy was purified by column chromatography. Five polyacetylene derivatives were identified, including (3S,8E)-deca-8-en-4,6-diyne-1,3-diol (1A), (3S)-deca-4,6,8-triyne-1,3-diol (1B), (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1,3-diol (2), bidensyneoside (3), and (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1-ol-3-O-ß-D-glucopyranoside (4). These compounds were investigated for their in vitro inhibitory activity against enzymes involved in neuroinflammatory disorders, including cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and butyrylcholinesterase (BchE) enzymes. All isolates recorded weak-moderate activities against COX-2. However, the polyacetylene glycoside (4) showed dual inhibition against BchE (IC50 14.77 ± 1.55 µM) and 5-LOX (IC50 34.59 ± 4.26 µM). Molecular docking experiments were conducted to explain these results, which showed that compound 4 exhibited greater binding affinity to 5-LOX (-8.132 kcal/mol) compared to the cocrystallized ligand (-6.218 kcal/mol). Similarly, 4 showed a good binding affinity to BchE (-7.305 kcal/mol), which was comparable to the cocrystallized ligand (-8.049 kcal/mol). Simultaneous docking was used to study the combinatorial affinity of the unresolved mixture 1A/1B to the active sites of the tested enzymes. Generally, the individual molecules showed lower docking scores against all the investigated targets compared to their combination, which was consistent with the in vitro results. This study demonstrated that the presence of a sugar moiety (in 3 and 4) resulted in dual inhibition of 5-LOX and BchE enzymes compared to their free polyacetylenes analogs. Thus, polyacetylene glycosides could be suggested as potential leads for developing new inhibitors against the enzymes involved in neuroinflammation.


Asunto(s)
Asteraceae , Butirilcolinesterasa , Humanos , Ciclooxigenasa 2/metabolismo , Polímero Poliacetilénico/farmacología , Simulación del Acoplamiento Molecular , Ligandos , Inhibidores de la Colinesterasa/farmacología , Asteraceae/metabolismo , Poliinos/química , Glicósidos/química , Diinos , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/química
6.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37111255

RESUMEN

Phytochemical investigation of the ethanolic extract of the aerial parts of Sisymbrium irio L. led to the isolation of four unsaturated fatty acids (1-4), including a new one (4), and four indole alkaloids (5-8). The structures of the isolated compounds were characterized with the help of spectroscopic techniques such as 1D, 2D NMR, and mass spectroscopy, and by correlation with the known compounds. In terms of their notable structural diversity, a molecular docking approach with the AutoDock 4.2 program was used to analyze the interactions of the identified fatty acids with PPAR-γ and the indole alkaloids with 5-HT1A and 5-HT2A, subtypes of serotonin receptors, respectively. Compared to the antidiabetic drug rivoglitazone, compound 3 acted as a potential PPAR-γ agonist with a binding energy of -7.4 kcal mol-1. Moreover, compound 8 displayed the strongest affinity, with binding energies of -6.9 kcal/mol to 5HT1A and -8.1 kcal/mol to 5HT2A, using serotonin and the antipsychotic drug risperidone as positive controls, respectively. The results of docked conformations represent an interesting target for developing novel antidiabetic and antipsychotic drugs and warrant further evaluation of these ligands in vitro and in vivo. On the other hand, an HPTLC method was developed to quantify α-linolenic acid in the hexane fraction of the ethanol extract of S. irio. The regression equation/correlation coefficient (r2) for linolenic acid was Y = 6.49X + 2310.8/0.9971 in the linearity range of 100-1200 ng/band. The content of α-linolenic acid in S. irio aerial parts was found to be 28.67 µg/mg of dried extract.

7.
J Enzyme Inhib Med Chem ; 38(1): 2187327, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36912259

RESUMEN

The major labdanes in the oleogum resin of Araucaria heterophylla (Salisb.) Franco, 13-epi-cupressic acid (1) and acetyl-13-epi-cupressic acid (2) were used to prepare seven new (3-9), along with one known (10) derivatives. RAW264.7 cells were used to evaluate the anti-inflammatory activity of the derivatives (1-10) via measuring the level of COX-2 expression and IL-6. Pre-treated RAW264.7 cells with 1-10 (except for derivative 7) at 25 µM for 24h exhibited downregulation of COX-2 expression in response to LPS stimulation. Moreover, pre-treatment with compounds 1, 2, or 3 significantly attenuated the LPS-stimulated IL-6 level in RAW264.7 cells (p < 0.05). A docking study was conducted against phospholipase A2 (PLA2), a crucial enzyme in initiating the inflammatory cascade. The significant structural features of compounds (1-10) as PLA2 inhibitors included the carbonyl group at C-4 (free or substituted) and the hydrophobic diterpenoid skeleton. This study suggested 13-epi-cupressic acid as a scaffold for new anti-inflammatory agents.


Asunto(s)
Interleucina-6 , Lipopolisacáridos , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Fosfolipasas A2
8.
Nat Prod Res ; 37(10): 1668-1673, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35875990

RESUMEN

Conocarpus lancifolius Engl. (Combretaceae) has several potential health-promoting effects, such as antidiabetic, antimicrobial, antioxidant, and cytotoxic effects. Phytochemical study of the ethyl acetate fraction of the leaf extract of this plant led to the isolation and identification of eight compounds viz., gallic acid (1), dihydromyricetin (2), myricetin (3), daucosterol (4), syringetin 3-O-ß-D-glucopyranoside (5), quercetin 3-O-ß-D-glucoside (6), gallocatechin (7), and (-)-epigallocatechin-3-O-gallate (8). Their acetylcholinesterase (AChE) in vitro and in silico inhibitory activities were evaluated. Daucosterol (4) showed the highest activity (IC50 0.316 µM) which was further validated by the superimposed docking orientation with the co-crystallized inhibitor, donepezil.


Asunto(s)
Inhibidores de la Colinesterasa , Combretaceae , Inhibidores de la Colinesterasa/química , Extractos Vegetales/química , Acetilcolinesterasa , Combretaceae/química , Antioxidantes/química
9.
J Ethnopharmacol ; 300: 115752, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36174807

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Peganum harmala L. is a traditional medicinal plant used for centuries in folk medicine. It has a wide array of therapeutic attributes, which include hypoglycemic, sedative, anti-inflammatory, and antioxidant properties. The fruit decoction of this plant was claimed by Avicenna as traditional therapy for urolithiasis. Also, P. harmala seed showed a clinical reduction in kidney stone number and size in patients with urolithiasis. AIM OF THE STUDY: In light of the above-mentioned data, the anti-urolithiatic activities of the seed extracts and the major ß-carboline alkaloids of P. harmala were investigated. MATERIALS AND METHODS: Extraction, isolation, and characterization of the major alkaloids were performed using different chromatographic and spectral techniques. The in vivo anti-urolithiatic action was evaluated using ethylene glycol (EG)-induced urolithiasis in rats by studying their mitigating effects on the antioxidant machinery, serum toxicity markers (i.e. nitrogenous waste, such as blood urea nitrogen, uric acid, urea, and creatinine), minerals (such as Ca, Mg, P, and oxalate), kidney injury marker 1 (KIM-1), and urinary markers (i.e. urine pH and urine output). RESULTS: Two major alkaloids, harmine (P1) and harmalacidine HCl (P2), were isolated and in vivo evaluated alongside the different extracts. The results showed that P. harmala and its constituents/fractions significantly reduced oxidative stress at 50 mg/kg body weight, p.o., as demonstrated by increased levels of glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and catalase (CAT) in kidney homogenate as compared to the EG-treated group. Likewise, the total extract, pet. ether fraction, n-butanol fraction, and P1, P2 alleviated malondialdehyde (MDA) as compared to the EG-treated group. Serum toxicity markers like blood urea nitrogen (BUN), creatinine, uric acid, urea, kidney injury molecule-1 (Kim-1), calcium, magnesium, phosphate, and oxalate levels were decreased by total extract, pet. ether fraction, n-butanol fraction, P1, and P2 as compared to the EG-treated group. Inflammatory markers like NFκ-B and TNF-α were also downregulated in the kidney homogenate of treatment groups as compared to the EG-treated group. Moreover, urine output and urine pH were significantly increased in treatment groups as compared to the EG-treated group deciphering anti-urolithiatic property of P. harmala. Histopathological assessment by different staining patterns also supported the previous findings and indicated that treatment with P. harmala caused a gradual recovery in damaged glomeruli, medulla, interstitial spaces and tubules, and brown calculi materials as compared to the EG-treated group. CONCLUSION: The current research represents scientific evidence on the use of P. harmala and its major alkaloids as an effective therapy in the prevention and management of urolithiasis.


Asunto(s)
Alcaloides , Cálculos Renales , Peganum , Urolitiasis , 1-Butanol , Alcaloides/farmacología , Animales , Antioxidantes , Calcio , Oxalato de Calcio/orina , Catalasa , Creatinina , Éteres , Glicol de Etileno/uso terapéutico , Glicol de Etileno/toxicidad , Glutatión , Glutatión Peroxidasa , Glutatión Reductasa , Harmina , Hipnóticos y Sedantes/uso terapéutico , Hipoglucemiantes/uso terapéutico , Cálculos Renales/tratamiento farmacológico , Magnesio , Malondialdehído , Peganum/química , Fosfatos , Extractos Vegetales , Ratas , Factor de Necrosis Tumoral alfa , Urea , Ácido Úrico , Urolitiasis/inducido químicamente , Urolitiasis/tratamiento farmacológico , Urolitiasis/patología
10.
Molecules ; 27(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431942

RESUMEN

HPLC-UV was used to compare the major constituents of two Pelargonium × hortorum cultivars and Pelargonium sidoides root extract. It revealed the presence of catechin and gallic acid in high concentrations and the absence of umckalin in P. × hortorum root extracts. The antibacterial activity of these extracts was screened against 19 Pseudomonas aeruginosa clinical isolates. P. × hortorum root extracts showed the lowest MIC values (512-1024 µg/mL). This activity was concluded to be attributable to the high concentrations of catechin and gallic acid. The anti-biofilm activity of catechin, gallic acid, and their combination was examined by a crystal violet assay. The combination reduced the percentage of strong and moderate biofilm-forming isolates from 52.63% to 5.26%. The impact on lasI and lasR genes expression using qRT-PCR and simultaneous docking against LasR protein was explored. The combination downregulated lasI and lasR gene expression in eight and six P. aeruginosa isolates, respectively, and showed the greatest docking score. Additionally, the in vivo protection capability of this combination in infected mice showed enhancement in the survival rate. Our study revealed the potential biofilm and quorum-sensing-inhibitory activity of the catechin and gallic acid combination as a novel alternative to inhibit bacterial pathogenicity.


Asunto(s)
Catequina , Pelargonium , Ratones , Animales , Pseudomonas aeruginosa , Catequina/farmacología , Catequina/metabolismo , Ácido Gálico/farmacología , Ácido Gálico/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo
11.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36297296

RESUMEN

This study aimed to establish a validated HPLC-UV analytical method for the determination of gallic acid, catechin, scopoletin, and umckalin in phytoformulations containing P. sidoides. Also, to assess the anti-SARS-CoV-2 effect of P. sidoides and these biomolecules in vitro. An HPLC-UV method was developed and verified by testing the commercial forms, Kalobin® and Umca®. It revealed low detectable scopoletin and high umckalin levels. Pelargonium sidoides exhibited a significant reduction of SARS-CoV-2-induced cytopathic effect in Vero E6 cells (IC50 13.79 µg/mL and selectivity index, SI 6.3), whereas scopoletin showed a remarkable anti-SARS-CoV-2 activity with better selectivity (IC50 17.79 µg/mL and SI 14.22). An in-silico prediction of the drugability indicated that the studied biomolecules are under the acceptable norms of Lipinski's rule, water-soluble, and showed high GIT absorption and bioavailability. Docking study towards the essential molecular targets for viral replication and entry of SARS-CoV-2 indicated good binding affinity of scopoletin (-6.4 Kcal/mol) towards the interface region between the SARS-CoV-2 spike protein RBD and the ACE2 surface receptor indicating the probability of interference with the viral entry to the human cells and showed H-bonding with His-41 in the active site of the main protease which may explain its high antiviral activity.

12.
J Enzyme Inhib Med Chem ; 37(1): 2036-2062, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35875938

RESUMEN

Salsola is an important genus in the plant kingdom with diverse traditional, industrial, and environmental applications. Salsola species are widely distributed in temperate regions and represent about 45% of desert plants. They are a rich source of diverse phytochemical classes, such as alkaloids, cardenolides, triterpenoids, coumarins, flavonoids, isoflavonoids, and phenolic acids. Salsola spp. were traditionally used as antihypertensive, anti-inflammatory, and immunostimulants. They attracted great interest from researchers as several pharmacological activities were reported, including analgesic, antipyretic, antioxidant, cytotoxic, hepatoprotective, contraceptive, antidiabetic, neuroprotective, and antimicrobial activities. Genus Salsola is one of the most notorious plant genera from the taxonomical point of view. Our study represents a comprehensive review of the previous phytochemical and biological research on the old world Salsola secies. It is designed to be a guide for future research on different plant species that still belong to this genus or have been transferred to other genera.


Asunto(s)
Salsola , Flavonoides , Medicina Tradicional , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
13.
Nat Prod Res ; 35(13): 2145-2156, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31526148

RESUMEN

Sixteen new analogues were synthesized from ricinine and tested alongside with seven known analogues for their cytotoxic activity against oral cancer (SAS cells) and normal epithelial cells (L132 cells). In contrast to 5-FU, the synthesized ricinine analogues did not show toxicity to normal cells. However, some of them inhibited the proliferation of oral cancer cells at 25 µM as evident from the MTT assay results. Ricinine analogue (19) was shown to be the most active derivative (69.22% inhibition). Potential targets involved in the oral cancer inhibitory activity of compound 19 were investigated using in-silico studies and western blot analysis. PTP1B was predicted to be a target for ricinine using reverse docking approach. This prediction was confirmed by western blot analysis that revealed the downregulation of PTP1B protein by compound 19. Moreover, it showed downregulation of COX-2 which is also extensively expressed in oral cancer.


Asunto(s)
Alcaloides/síntesis química , Alcaloides/farmacología , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Piridonas/síntesis química , Piridonas/farmacología , Alcaloides/química , Antineoplásicos/farmacología , Dominio Catalítico , Muerte Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Piridonas/química , Relación Estructura-Actividad
14.
Nat Prod Res ; 34(24): 3506-3513, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30822142

RESUMEN

The antiproliferative activities of 2',3,4',5,5'-pentahydroxy-cis-stilbene 1, resveratrol 2, oxyresveratrol 3, norartocarpetin 4, kuwanon C 5, morusin 6, cudraflavone A7, kuwanon G 8, albafuran C 9, mulberrofuran G 10, 3-acetyl-O-α-amyrin 11, 3-acetyl-O-ß-amyrin 12, ursolic acid-3-O-acetate 13 and uvaol 14, previously identified from the barks of Morus nigra L., were investigated against HepG2 and MCF-7 cell lines. In addition, a series of methylated stilbenes 15-19 were prepared using compounds 1-3 and their antiproliferative effects were similarly investigated. The structure of a new 2',3,4'-trimethoxy-5-hydroxy-trans-stilbene 19 was elucidated using spectroscopic techniques. It showed remarkable activity against MCF-7 cells with IC50 12.5 µM. However, kuwanon C (5) showed the highest antiproliferative activity with IC50 3.92 and 9.54 µM against MCF-7 and HepG2, respectively.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Morus/química , Estilbenos/química , Estilbenos/farmacología , Antineoplásicos Fitogénicos/química , Benzofuranos/análisis , Benzofuranos/farmacología , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Flavonoides/análisis , Flavonoides/farmacología , Células Hep G2 , Humanos , Células MCF-7 , Corteza de la Planta/química , Resveratrol/análisis , Resveratrol/farmacología , Estilbenos/análisis , Terpenos/análisis , Terpenos/farmacología
15.
Nat Prod Res ; 34(6): 804-809, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30422011

RESUMEN

Phytochemical study of the aerial part of Pulicaria undulata L. led to the isolation of nine compounds. The structure of 1ß,2α,3ß,19α,23-pentahydroxy-urs-12-en-28-oic acid (4) was revised and confirmation of the stereochemical configuration of the hydroxyl groups was established using NOESY and selective decoupling experiments. The other compounds were identified as 1,2-dehydro-1,10α-dihydropseudoivalin (1), axillarin (2), grandifloric acid-15-ß-glucoside (3), myrianthic acid (5), caffeic acid (6), quercetin (7), paniculoside IV (8) and caffeic anhydride (9). The structures were characterized by 1 D, 2 D NMR spectroscopy and confirmed with HRMS. Antimicrobial and antiquorum-sensing activities of the different extracts and isolated compounds of the plant were investigated. Generally, the phenolic rather than the terpenoidal compounds exhibited remarkable antimicrobial and antiquorum-sensing activity.[Formula: see text].


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Fitoquímicos/aislamiento & purificación , Pulicaria/química , Percepción de Quorum/efectos de los fármacos , Triterpenos/química , Antiinfecciosos/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fenoles/aislamiento & purificación , Fenoles/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/química , Triterpenos/aislamiento & purificación , Triterpenos/farmacología
16.
Nat Prod Res ; 33(11): 1556-1562, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29334239

RESUMEN

Ricinine (1), a known major alkaloid in Ricinus communis plant, was used as a starting compound for the synthesis of six ricinine derivatives; two new and four known compounds. The new derivatives; 3-amino-5-methyl-1H-pyrazolo[4,3-c]pyridin-4(5H)-one (2), and 3-amino-5-methyl-1-(phenylsulfonyl)-1H-pyrazolo[4,3-c]pyridin-4(5H)-one (3), as well as the previously prepared derivatives (4-7) were subjected for antimicrobial and antiquorum-sensing evaluation in comparison to different R. communis extracts. Acetyl ricininic acid derivative (5) showed the highest antimicrobial activity among all tested derivatives against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeuroginosa and Candida albicans. However, compound 7 (4-methoxy-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide) showed the highest antiquorum-sensing activity among all tested compounds and extracts. These findings proved the usefulness of ricinine as a good scaffold for the synthesis of new antimicrobial and antiquorum-sensing derivatives in spite of its poor contribution to the antimicrobial activity of the plant extracts.


Asunto(s)
Alcaloides/química , Antiinfecciosos/farmacología , Extractos Vegetales/farmacología , Piridonas/química , Percepción de Quorum/efectos de los fármacos , Ricinus/química , Alcaloides/farmacología , Antiinfecciosos/química , Candida albicans/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Piridonas/farmacología , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
17.
Nat Prod Res ; 33(18): 2591-2599, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29656653

RESUMEN

Acetylcholinesterase inhibitors (AChE-Is) increase both level and duration of action of acetylcholine (ACh); thus, alleviate symptoms of Alzheimer's disease (AD). Glycyrrhizin, is the main active compound in liquorice root. Its aglycone, glycyrrhetinic acid, has shown several beneficial pharmacological activities. This study reports the synthesis and screening of a series of glycyrrhetinic acid analogs as AChE-Is. Fourteen derivatives were prepared, of which five derivatives are recorded as new viz., 3-phenyl-carbamoyl-18ß-glycyrrhetinic acid (J9), 3-acetyl-18ß-glycyrrhetinic-30-anilinamide (J10), 3-acetyl-18ß-glycyrrhetinic-30-ethanolamide (J11), 3-acetyl-18ß-glycyrrhetinic-30-n-butylamide (J12) and 18ß-glycyrrhetinic acid-30-prenyl ester (J14), in addition to nine known derivatives (J1-J8 & J13). Compounds J12, J11, J0 and J3 showed remarkable AChE-I activity with IC50 values of 3.43, 5.39, 6.27 and 8.68 µM, respectively. These results are in full agreement with the docking study. The active compounds were non-cytotoxic to normal cells (WI-38).


Asunto(s)
Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Ácido Glicirrínico/química , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Fibroblastos/efectos de los fármacos , Ácido Glicirrínico/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Cicatrización de Heridas/efectos de los fármacos
18.
J Nat Prod ; 80(11): 2905-2909, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29131648

RESUMEN

Alkaloids extracted from mature Vinca minor leaves were fractionated by preparative HPLC. By means of HRMS and NMR data, the main alkaloids were identified as vincamine, strictamine, 10-hydroxycathofoline, and vincadifformine. Upon treatment with methyl jasmonate (MeJA), the pattern and composition of the indole alkaloids changed extensively. While 10-hydroxycathofoline and strictamine concentrations remained unaltered, vincamine and vincadifformine levels showed a dramatic reduction. Upon MeJA treatment, four other indole alkaloids were detected in high quantities. Three of these alkaloids have been identified as minovincinine, minovincine, and 9-methoxyvincamine. Whereas minovincinine and minovincine are known to occur in trace amounts in V. minor, 9-methoxyvincamine represents a novel natural product. Based on the high similarities of vincamine and 9-methoxyvincamine and their inverse changes in concentrations, it is postulated that vincamine is a precursor of 9-methoxyvincamine. Similarly, vincadifformine seems to be converted first to minovincinine and finally to minovincine. Because MeJA treatment greatly altered the alkaloidal composition of V. minor, it could be used as a potential elicitor of alkaloids that are not produced under normal conditions.


Asunto(s)
Acetatos/farmacología , Ciclopentanos/farmacología , Alcaloides Indólicos/análisis , Oxilipinas/farmacología , Vinca/química , Vincamina/análogos & derivados , Alcaloides , Cromatografía Líquida de Alta Presión , Alemania , Alcaloides Indólicos/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Vinca/enzimología , Alcaloides de la Vinca , Vincamina/química , Vincamina/farmacología
19.
Bioorg Med Chem ; 25(3): 1277-1285, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28065501

RESUMEN

Leukotriene A4 hydrolase (LTA4H) is a proinflammatory enzyme that generates the inflammatory mediator leukotriene which may play an important role in chronic inflammation associated carcinogenesis. [6]-gingerol, the major bioactive compound of Zingiber officinale, is a potential inhibitor of LTA4H, a highly expressed enzyme in colorectal carcinoma. Eighteen compounds; seven of natural origin (including [4]-, [6]-, [8]-, and [10]-gingerol), five new and six known semi-synthesized [6]-gingerol derivatives were examined using docking, in vitro cytotoxicity against human colon cancer cells (HCT-116) and LTA4H aminopeptidase and epoxide hydrolase inhibitory studies. Methyl shogoal (D8) showed to be the most potent compound against HCT-116 cells (IC50; 1.54µM). Remarkably, D8 proved to be non-cytotoxic to normal cells; (TIG-1) and (HF-19) with high selective index (SI; 52.3). Furthermore [6]-gingerol derivatives showed potent LTA4H inhibitory activities in comparison to the universal positive controls (bestatin and 4BSA). Among the natural gingerols, [10]-gingerol (N3) exhibited the highest LTA4H aminopeptidase and epoxide hydrolase inhibitory activities with IC50; 21.59 and 15.24µM, respectively. Meanwhile, methyl shogoal (D8) and 4'-O-prenyl-[6]-gingerol (D10) retained the highest inhibition with IC50; 4.92 and 3.01µM, for aminopeptidase, and 11.27 and 7.25µM for epoxide hydrolase activities, respectively.


Asunto(s)
Antineoplásicos/farmacología , Catecoles/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Alcoholes Grasos/farmacología , Simulación del Acoplamiento Molecular , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Catecoles/síntesis química , Catecoles/química , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Epóxido Hidrolasas/metabolismo , Alcoholes Grasos/síntesis química , Alcoholes Grasos/química , Humanos , Estructura Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
Front Microbiol ; 7: 659, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242690

RESUMEN

Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1-V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti-virulence of P. aeruginosa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...