Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36836817

RESUMEN

Currently, algae arouse a growing interest in the pharmaceutical and cosmetic area due to the fact that they have a great diversity of bioactive compounds with the potential for pharmacological and nutraceutical applications. Due to lifestyle modifications brought on by rapid urbanization, diabetes mellitus, a metabolic illness, is the third largest cause of death globally. The hunt for an efficient natural-based antidiabetic therapy is crucial to battling diabetes and the associated consequences due to the unfavorable side effects of currently available antidiabetic medications. Finding the possible advantages of algae for the control of diabetes is crucial for the creation of natural drugs. Many of algae's metabolic processes produce bioactive secondary metabolites, which give algae their diverse chemical and biological features. Numerous studies have demonstrated the antioxidant and antidiabetic benefits of algae, mostly by blocking carbohydrate hydrolyzing enzyme activity, such as α-amylase and α-glucosidase. Additionally, bioactive components from algae can lessen diabetic symptoms in vivo. Therefore, the current review concentrates on the role of various secondary bioactive substances found naturally in algae and their potential as antioxidants and antidiabetic materials, as well as the urgent need to apply these substances in the pharmaceutical industry.

2.
Int J Environ Health Res ; 32(7): 1447-1468, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33678072

RESUMEN

Upon Seeking natural and safe alternatives for synthetic medicines to treat many chronic diseases, seaweeds have offered a promising resource to produce numerous bioactive secondary metabolites. Through in vivo investigations, Turbinaria decurrens acetone extract (AE) revealed its antidiabetic activity against alloxan-induced diabetic rats. Treatment of rats with T. decurrens AE at 300 and 150 mg/Kg doses revealed antihyperglycemic activity by reducing the elevated blood glucose level. A remarkable decrease in the liver, kidney functions, and hyperlipidemia related to diabetes were also detected. Administration of the same extract also showed a recovery in body weight loss, total protein, albumin, and haemoglobin levels compared with untreated diabetic rats. Furthermore, treatment of rats with the same extract improved liver and pancreas histopathological disorders related to diabetes. These effects may be attributed to the presence of bioactive phytochemicals and antioxidant components in T. decurrens AE mainly cyclotrisiloxane, hexamethyl, and cyclic diterpene 3,7,11,15-tetramethyl-2-hexadecen-1-ol (phytol alcohol). Besides, other valuable secondary metabolites, as phenols, flavonoids, alkaloids, terpenoids, steroid and glycosides, which were documented and published by the same authors in a previous study. The obtained results in the present study recommended using T. decurrens AE in developing medicinal preparations for treatment of diabetes and its related symptoms.


Asunto(s)
Aloxano , Diabetes Mellitus Experimental , Acetona/uso terapéutico , Acetona/toxicidad , Aloxano/uso terapéutico , Aloxano/toxicidad , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...