Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Sci Health B ; 59(7): 399-416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38785435

RESUMEN

Secondary metabolites produced by Bacillus species from marine sources encompass a variety of compounds such as lipopeptides, isocoumarins, polyketides, macrolactones, polypeptides and fatty acids. These bioactive substances exhibit various biological activities, including antibiotic, antifungal, antiviral, and antitumor properties. This study aimed to isolate and identify a particular species of Bacillus from marine water and organisms that can produce bioactive secondary metabolites. Among the 73 Bacillus isolates collected, only 5 exhibited antagonistic activity against various viral and bacterial pathogens. The active isolates were subjected to 16S rRNA sequencing to determine their taxonomical affiliation. Among them, Bacillus tequilensis CCASU-2024-66 strain no. 42, with the accession number ON 054302 in GenBank, exhibited the highest inhibitory potential. It displayed an inhibition zone of 21 mm against Bacillus cereus while showing a minimum zone of inhibition of 9 mm against Escherichia coli and gave different inhibition against pathogenic fungi, the highest inhibition zone 15 mm against Candida albicans but the lowest inhibition zone 10 mm was against Botrytis cinerea, Fusarium oxysporum. Furthermore, it demonstrated the highest percentage of virucidal effect against the Newcastle virus and influenza virus, with rates of 98.6% and 98.1%, respectively. Furthermore, GC-MS analysis was employed to examine the bioactive substance components, specifically focusing on volatile and polysaccharide compounds. Based on these results, Bacillus tequilensis strain 42 may have the potential to be employed as an antiviral agent in poultry cultures to combat Newcastle and influenza, two extremely destructive viruses, thus reducing economic losses in the poultry production sector. Bacteria can be harnessed for the purpose of preserving food and controlling pathogenic fungi in both human and plant environments. Molecular docking for the three highly active derivatives 2,3-Butanediol, 2TMS, D-Xylopyranose, 4TMS, and Glucofuranoside, methyl 2,3,5,6-tetrakis-O-(trimethylsilyl) was carried out against the active sites of Bacillus cereus, Listeria monocytogenes, Candida albicans, Newcastle virus and influenza virus. The data obtained from molecular docking is highly correlated with that obtained from biology. Moreover, these highly active compounds exhibited excellent proposed ADMET profile.


Asunto(s)
Bacillus , Cromatografía de Gases y Espectrometría de Masas , Bacillus/química , Bacillus/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/química , Agua de Mar/microbiología , ARN Ribosómico 16S/genética , Hongos/efectos de los fármacos , Botrytis/efectos de los fármacos
3.
Sci Rep ; 12(1): 15599, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114347

RESUMEN

Cladosporium parasphaerospermum, Cladosporium chlamydosporigenum, and Cladosporium compactisporum have all been discovered and characterized as new Cladosporium species. The three new species seemed to generate cold-active pectinases with high activity at pH 6.0 and 10 °C, pH 6.0 and 15 °C, and pH 5.0 and 15 °C, respectively, with the most active being C. parasphaerospermum pectinase. In submerged fermentation (SmF), C. parasphaerospermum produced the most cold-active pectinase with the highest activity and specific activity (28.84 U/mL and 3797 U/mg) after 8 days. C. parasphaerospermum cold-active pectinase was isolated using DEAE-Cellulose anion exchange resin and a Sephadex G 100 gel filtration column. The enzyme was purified 214.4-fold and 406.4-fold greater than the fermentation medium using DEAE-cellulose and Sephadex G 100, respectively. At pH 7.0 and 10 °C, pure pectinase had the highest activity (6684 U/mg), with Km and Vmax determined to be 26.625 mg/mL and 312.5 U/min, respectively. At 5 mM/mL, EDTA, MgCl2, and SDS inhibited the activity of pure pectinase by 99.21, 96.03, and 94.45%, respectively. The addition of 10 U/mL pure pectinase enhanced the yield of apple, orange, apricot, and peach juice by 17, 20, 13, and 24%, respectively, and improved the clarity and colour of orange juice by 194 and 339%, respectively. We can now add cold-active pectinase production to the long list of Cladosporium species that have been identified. We also report three new species that can be used in biotechnological solutions as active microbial pectinase producers. Although further research is needed, these distinct species might be used to decompose difficult and resistant pertinacious wastes as well as clear fruit juices.


Asunto(s)
Cladosporium , Poligalacturonasa , Resinas de Intercambio Aniónico , DEAE-Celulosa , Ácido Edético , Egipto
4.
Front Microbiol ; 13: 862080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722342

RESUMEN

During potato chips manufacturing, large amounts of wastewater and potato powder wastes are produced. The wastewater obtained at washing after cutting the peeled potatoes into slices was analyzed, and a large quantity of organic compounds and minerals such as starch (1.69%), protein (1.5%), total carbohydrate (4.94%), reducing sugar (0.01%), ash (0.14%), crude fat (0.11%), Ca (28 mg/L), Mg (245 mg/L), Fe (45.5 mg/L), and Zn (6.5 mg/L) were recorded; these wastes could be considered as valuable by-products if used as a fermentation medium to increase the value of the subsequent products and to exceed the cost of reprocessing. In this study, we used wastewater and potato powder wastes as a growth medium for pigment and biomass production by Monascus purpureus (Went NRRL 1992). The response surface methodology was used to optimize total pigment and fungal biomass production. The influence of potato powder waste concentration, fermentation period, and peptone concentration on total pigment and biomass production was investigated using the Box-Behnken design method with 3-factors and 3-levels. The optimal production parameters were potato powder waste concentration of 7.81%, fermentation period of 12.82 days, and peptone concentration of 2.87%, which produced a maximum total pigment of 29.86 AU/ml that include, respectively, a maximum biomass weight of 0.126 g/ml and the yield of pigment of 236.98 AU/g biomass. The pigments produced were used as coloring agents for ice lolly. This study has revealed that the ice lolly preparations supplemented with these pigments received high acceptability. Finally, we recommend using wastewater and potato powder wastes for pigment and biomass production, which could reduce the cost of the pigment production process on an industrial scale in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...