Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rock Mech Rock Eng ; 57(7): 4679-4706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006378

RESUMEN

We employed a novel combination of digital image correlation (DIC) and grain-based hybrid finite-discrete element method (GB-FDEM) to improve the comprehension of the relationships between microstructural features and the mechanical properties of granitic rocks. DIC and numerical results showed that macrocracks initiated and propagated along grain boundaries among different minerals driven by the high stiffness contrast between the compliant biotite and the stiffer feldspar/quartz grains. Surface deformation analyses revealed that tensile-dominated macrocracks open at monotonically increased rates before the crack damage threshold, and the opening accelerated afterwards with the increased shear component. The onset of the acceleration of the opening rate of macrocracks can be used to infer the crack damage threshold. Both strain and acoustic emission were used to infer damage stress thresholds in the synthetic numerical samples. Numerical results showed that the damage stress thresholds and uniaxial compressive strength decrease with increasing grain size following log-linear relations. Coarse-grained samples tend to fail by axial splitting, while fine-grained samples fail by shear zone formation. Biotite and quartz contents significantly affect mechanical properties, while quartz to feldspar ratio is positively related to the mechanical properties. Our study demonstrates the capacities of DIC and GB-FDEM in inferring damage conditions in granitic rocks and clarifies the microstructural control of the macroscopic mechanical behaviors. Our results also provide a comprehensive understanding of the systematics of strain localization, crack development, and acoustic emission during the rock progressive failure process. Supplementary Information: The online version contains supplementary material available at 10.1007/s00603-024-03789-7.

2.
Int J Coal Sci Technol ; 10(1): 70, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928133

RESUMEN

Complex hydraulic fracture networks are critical for enhancing permeability in unconventional reservoirs and mining industries. However, accurately simulating the fluid flow in realistic fracture networks (compared to the statistical fracture networks) is still challenging due to the fracture complexity and computational burden. This work proposes a simple yet efficient numerical framework for the flow simulation in fractured porous media obtained by 3D high-resolution images, aiming at both computational accuracy and efficiency. The fractured rock with complex fracture geometries is numerically constructed with a cell-based discrete fracture-matrix model (DFM) having implicit fracture apertures. The flow in the complex fractured porous media (including matrix flow, fracture flow, as well as exchange flow) is simulated with a pipe-based cell-centered finite volume method. The performance of this model is validated against analytical/numerical solutions. Then a lab-scale true triaxial hydraulically fractured shale sample is reconstructed, and the fluid flow in this realistic fracture network is simulated. Results suggest that the proposed method achieves a good balance between computational efficiency and accuracy. The complex fracture networks control the fluid flow process, and the opened natural fractures behave as primary fluid pathways. Heterogeneous and anisotropic features of fluid flow are well captured with the present model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...