Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37584104

RESUMEN

Extracellular signal-regulated kinase 2 (ERK-2) is a serine/threonine protein kinase in eukaryotic cells and belongs to the mitogen-activated protein kinase (MAPK) family. An activated form of ERK-2 phosphorylates substrates in the nucleus or cytoplasm and causes specific proteins to be expressed or activated, regulating cell proliferation, differentiation and other functions. Caffeic acid (3,4 - dihydroxy cinnamic acid), as previously reported, directly interacts with ERK-2 and reduces its effects in vitro. It is also reported to have a variety of pharmacological effects, including anti-inflammatory, immunomodulatory, antioxidant and anticancer activities. In the current study, a deep-learning protocol was employed to develop effective 100 compounds by modifying the chemical structure of DHC to improve its inhibitory performance against ERK-2. Calculations of physicochemical properties for those compounds revealed that 20 compounds had drug scores better than DHC (≥ 80%). Following that, molecular docking calculations were performed on the selected compounds and DHC. The obtained data revealed that five compounds had docking scores better than DHC (≥ -5.9 kcal/mol). Moreover, data from molecular mechanics and the Poisson - Boltzmann surface area (MM/PBSA) binding energy over 200 ns MD simulation confirmed that Cmd-1 and Cmd-4 exhibited higher stability with ΔGbinding of -40.8 and -49.1 kcal/mol, respectively, which is better than DHC (-35.1 kcal/mol). Finally, various energetic and structural studies showed the high stability of the two generated compounds within the active site of ERK-2. This study highlights the potential use of Cmd-1 and Cmd-4 as promising anti-ERK-2 drug candidates.Communicated by Ramaswamy H. Sarma.

2.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570684

RESUMEN

BRD4 (bromodomain-containing protein 4) is an epigenetic reader that realizes histone proteins and promotes the transcription of genes linked to cancer progression and non-cancer diseases such as acute heart failure and severe inflammation. The highly conserved N-terminal bromodomain (BD1) recognizes acylated lysine residues to organize the expression of genes. As such, BD1 is essential for disrupting BRD4 interactions and is a promising target for cancer treatment. To identify new BD1 inhibitors, a SuperDRUG2 database that contains more than 4600 pharmaceutical compounds was screened using in silico techniques. The efficiency of the AutoDock Vina1.1.2 software to anticipate inhibitor-BRD4-BD1 binding poses was first evaluated based on the co-crystallized R6S ligand in complex with BRD4-BD1. From database screening, the most promising BRD4-BD1 inhibitors were subsequently submitted to molecular dynamics (MD) simulations integrated with an MM-GBSA approach. MM-GBSA computations indicated promising BD1 binding with a benzonaphthyridine derivative, pyronaridine (SD003509), with an energy prediction (ΔGbinding) of -42.7 kcal/mol in comparison with -41.5 kcal/mol for a positive control inhibitor (R6S). Pharmacokinetic properties predicted oral bioavailability for both ligands, while post-dynamic analyses of the BRD4-BD1 binding pocket demonstrated greater stability for pyronaridine. These results confirm that in silico studies can provide insight into novel protein-ligand regulators, specifically that pyronaridine is a potential cancer drug candidate.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Nucleares , Simulación del Acoplamiento Molecular , Proteínas Nucleares/metabolismo , Proteínas que Contienen Bromodominio , Factores de Transcripción/metabolismo , Ligandos , Proteínas de Ciclo Celular/metabolismo
3.
J Biomol Struct Dyn ; : 1-11, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37477257

RESUMEN

The recent outbreak of the Ebola virus (EBOV) has marked it as one of the most severe health threats globally. Among various anti-EBOV inhibitors studied, galidesivir (BCX4430) has shown remarkable efficacy. This study aims to identify novel potential anti-EBOV drugs among galidesivir analogs, focusing on the Zaire ebolavirus (Z-EBOV), which exhibits a mortality rate of 90%. We subjected 200 candidate compounds to molecular docking calculations, followed by an evaluation of the bioactivity of the top 25 compounds using the OSIRIS Property Explorer. Initial 50 ns molecular dynamics (MD) simulations were then performed. According to our findings, only six compounds exhibited positive drug scores. We further performed molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations of binding energy over 50 ns, selecting the two top-performing compounds for extended 150 ns MD simulations. CID 117698807 and CID 117712809 showed higher binding stability compared to galidesivir, with ΔGbinding values of -36.7 and -53.4 kcal/mol, respectively. Both compounds demonstrated high stability within the Z-EBOV-V24 active site over the 150 ns MD simulations. Hence, our study proposes CID 117698807 and CID 117712809 as potential anti-Z-EBOV-V24 drug candidates, warranting further investigation.Communicated by Ramaswamy H. Sarma.

4.
PLoS One ; 18(7): e0288919, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37494356

RESUMEN

An effective approach to reverse multidrug resistance (MDR) is P-glycoprotein (P-gp, ABCB1) transport inhibition. To identify such molecular regulators, the SuperNatural II database, which comprises > 326,000 compounds, was virtually screened for ABCB1 transporter inhibitors. The Lipinski rule was utilized to initially screen the SuperNatural II database, identifying 128,126 compounds. Those natural compounds were docked against the ABCB1 transporter, and those with docking scores less than zosuquidar (ZQU) inhibitor were subjected to molecular dynamics (MD) simulations. Based on MM-GBA binding energy (ΔGbinding) estimations, UMHSN00009999 and UMHSN00097206 demonstrated ΔGbinding values of -68.3 and -64.1 kcal/mol, respectively, compared to ZQU with a ΔGbinding value of -49.8 kcal/mol. For an investigation of stability, structural and energetic analyses for UMHSN00009999- and UMHSN00097206-ABCB1 complexes were performed and proved the high steadiness of these complexes throughout 100 ns MD simulations. Pharmacokinetic properties of the identified compounds were also predicted. To mimic the physiological conditions, MD simulations in POPC membrane surroundings were applied to the UMHSN00009999- and UMHSN00097206-ABCB1 complexes. These results demonstrated that UMHSN00009999 and UMHSN00097206 are promising ABCB1 inhibitors for reversing MDR in cancer and warrant additional in-vitro/in-vivo studies.


Asunto(s)
Resistencia a Antineoplásicos , Simulación de Dinámica Molecular , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos , Lípidos/farmacología , Simulación del Acoplamiento Molecular , Línea Celular Tumoral
5.
J Mol Model ; 29(3): 70, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36808314

RESUMEN

BACKGROUND: In November 2021, variant B.1.1.529 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified by the World Health Organization (WHO) and designated Omicron. Omicron is characterized by a high number of mutations, thirty-two in total, making it more transmissible than the original virus. More than half of those mutations were found in the receptor-binding domain (RBD) that directly interacts with human angiotensin-converting enzyme 2 (ACE2). This study aimed to discover potent drugs against Omicron, which were previously repurposed for coronavirus disease 2019 (COVID-19). All repurposed anti-COVID-19 drugs were compiled from previous studies and tested against the RBD of SARS-CoV-2 Omicron. METHODS: As a preliminary step, a molecular docking study was performed to investigate the potency of seventy-one compounds from four classes of inhibitors. The molecular characteristics of the best-performing five compounds were predicted by estimating the drug-likeness and drug score. Molecular dynamics simulations (MD) over 100 ns were performed to inspect the relative stability of the best compound within the Omicron receptor-binding site. RESULTS: The current findings point out the crucial roles of Q493R, G496S, Q498R, N501Y, and Y505H in the RBD region of SARS-CoV-2 Omicron. Raltegravir, hesperidin, pyronaridine, and difloxacin achieved the highest drug scores compared with the other compounds in the four classes, with values of 81%, 57%, 18%, and 71%, respectively. The calculated results showed that raltegravir and hesperidin had high binding affinities and stabilities to Omicron with ΔGbinding of - 75.7304 ± 0.98324 and - 42.693536 ± 0.979056 kJ/mol, respectively. Further clinical studies should be performed for the two best compounds from this study.


Asunto(s)
COVID-19 , Hesperidina , Humanos , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Raltegravir Potásico , SARS-CoV-2 , Simulación de Dinámica Molecular , Unión Proteica
6.
Curr Issues Mol Biol ; 44(10): 5028-5047, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36286057

RESUMEN

(1) Background: SARS-CoV-2 Omicron BA.1 is the most common variation found in most countries and is responsible for 99% of cases in the United States. To overcome this challenge, there is an urgent need to discover effective inhibitors to prevent the emerging BA.1 variant. Natural products, particularly flavonoids, have had widespread success in reducing COVID-19 prevalence. (2) Methods: In the ongoing study, fifteen compounds were annotated from Echium angustifolium and peach (Prunus persica), which were computationally analyzed using various in silico techniques. Molecular docking calculations were performed for the identified phytochemicals to investigate their efficacy. Molecular dynamics (MD) simulations over 200 ns followed by molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA) were performed to estimate the binding energy. Bioactivity was also calculated for the best components in terms of drug likeness and drug score. (3) Results: The data obtained from the molecular docking study demonstrated that five compounds exhibited remarkable potency, with docking scores greater than -9.0 kcal/mol. Among them, compounds 1, 2 and 4 showed higher stability within the active site of Omicron BA.1, with ΔGbinding values of -49.02, -48.07, and -67.47 KJ/mol, respectively. These findings imply that the discovered phytoconstituents are promising in the search for anti-Omicron BA.1 drugs and should be investigated in future in vitro and in vivo research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...