Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 11(18)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139465

RESUMEN

Diabetic retinopathy (DR) is a serious complication of diabetes that results from sustained hyperglycemia, hyperlipidemia, and oxidative stress. Under these conditions, inducible nitric oxide synthase (iNOS) expression is upregulated in the macrophages (MΦ) and microglia, resulting in increased production of reactive oxygen species (ROS) and inflammatory cytokines, which contribute to disease progression. Arginase 1 (Arg1) is a ureohydrolase that competes with iNOS for their common substrate, L-arginine. We hypothesized that the administration of a stable form of Arg1 would deplete L-arginine's availability for iNOS, thus decreasing inflammation and oxidative stress in the retina. Using an obese Type 2 diabetic (T2DM) db/db mouse, this study characterized DR in this model and determined if systemic treatment with pegylated Arg1 (PEG-Arg1) altered the progression of DR. PEG-Arg1 treatment of db/db mice thrice weekly for two weeks improved visual function compared with untreated db/db controls. Retinal expression of inflammatory factors (iNOS, IL-1ß, TNF-α, IL-6) was significantly increased in the untreated db/db mice compared with the lean littermate controls. The increased retinal inflammatory and oxidative stress markers in db/db mice were suppressed with PEG-Arg1 treatment. Additionally, PEG-Arg1 treatment restored the blood-retinal barrier (BRB) function, as evidenced by the decreased tissue albumin extravasation and an improved endothelial ZO-1 tight junction integrity compared with untreated db/db mice.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Albúminas/metabolismo , Animales , Arginasa/metabolismo , Arginina , Retinopatía Diabética/tratamiento farmacológico , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Polietilenglicoles , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Neuropeptides ; 94: 102258, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35660758

RESUMEN

Diabetic retinopathy (DR) is a neurodegenerative disease that results as a complication of dysregulated glucose metabolism, or diabetes. The signaling of insulin is lost or dampened in diabetes, but this hormone has also been shown to be an important neurotrophic factor which supports neurons of the brain. The role of local insulin synthesis and secretion in the retina, however, is unclear. We have investigated whether changes in local insulin synthesis occur in the diabetic retina and in response to stressors known to initiate retinal neurodegenerative processes. The expression of insulin and its cleavage product, c-peptide, were examined in retinas of a Type I diabetes animal model and human postmortem donors with DR. We detected mRNAs for insulin I (Ins1), insulin II (Ins2) and human insulin (Ins) by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Using an ex-vivo system, isolated neuroretinas and retinal pigmented epithelium (RPE) layers were exposed to glycemic, oxidative and inflammatory environments to measure insulin gene transcripts produced de novo in the retina under disease-relevant conditions. The expression of insulin in the retina was altered with the progression of diabetes in STZ mice and donors with DR. Transcription factors for insulin, were simultaneously expressed in a pattern matching insulin genes. Furthermore, de novo insulin mRNA in isolated retinas was induced by acute stress. RPE explants displayed the most pronounced changes in Ins1 and Ins2. This data reveals that the retina, like the brain, is an organ capable of producing local insulin and this synthesis is altered in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Enfermedades Neurodegenerativas , Animales , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Insulina/farmacología , Ratones , ARN Mensajero/metabolismo , Retina/metabolismo
3.
Exp Eye Res ; 221: 109129, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35649469

RESUMEN

Preservation of retinal barrier function is critical to maintenance of retinal health. Therefore, it is not surprising that loss of barrier integrity is a pathologic feature common to degenerative retinal diseases such as diabetic retinopathy. Our prior studies demonstrate the importance of hydroxycarboxylic acid receptor 2/GPR109A (HCAR2/GPR109A) expression in the retinal pigment epithelium (RPE) to outer retinal barrier integrity. However, whether HCAR2/GPR109A is expressed in retinal endothelial cells and has a similar relationship to inner blood retinal barrier regulation is not known. In the current study, we examined relevance of receptor expression to endothelial cell dependent-blood retinal barrier integrity. siRNA technology was used to modulate HCAR2/GPR109A expression in human retinal endothelial cells (HRECs). Cells were cultured in the presence or absence of VEGF, a pro-inflammatory stimulus, and/or various concentrations of the HCAR2/GPR109A-specific agonist beta-hydyroxybutyrate (BHB). HCAR2/GPR109A expression was monitored by qPCR and electrical cell impedance sensing (ECIS) was used to evaluate barrier function. Complementary in vivo studies were conducted in wildtype and HCAR2/GPR109A knockout mice treated intraperitoneally with lipopolysaccharide and/or BHB. Vascular leakage was monitored using fluorescein angiography and Western blot analyses of albumin extravasation. Additionally, retinal function was evaluated by OptoMotry. Decreased (siRNA knockdown) or absent (gene knockout) HCAR2/GPR109A expression was associated with impaired barrier function both in vitro and in vivo. BHB treatment provided some protection, limiting disruptions in retinal barrier integrity and function; an effect that was found to be receptor (HCAR2/GPR109A)-dependent. Collectively, the present studies support a key role for HCAR2/GPR109A in regulating blood-retinal barrier integrity and highlight the therapeutic potential of the receptor toward preventing and treating retinal diseases such as diabetic retinopathy in which compromised barrier function is paramount.


Asunto(s)
Retinopatía Diabética , Receptores Acoplados a Proteínas G , Enfermedades de la Retina , Animales , Barrera Hematorretinal/metabolismo , Proteínas Portadoras/metabolismo , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Cetonas/metabolismo , Cetonas/uso terapéutico , Ratones , ARN Interferente Pequeño/uso terapéutico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Enfermedades de la Retina/metabolismo
4.
Front Physiol ; 13: 831616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250632

RESUMEN

Diabetic retinopathy (DR) and diabetic macular edema (DME) are retinal complications of diabetes that can lead to loss of vision and impaired quality of life. The current gold standard therapies for treatment of DR and DME focus on advanced disease, are invasive, expensive, and can trigger adverse side-effects, necessitating the development of more effective, affordable, and accessible therapies that can target early stage disease. The pathogenesis and pathophysiology of DR is complex and multifactorial, involving the interplay between the effects of hyperglycemia, hyperlipidemia, hypoxia, and production of reactive oxygen species (ROS) in the promotion of neurovascular dysfunction and immune cell polarization to a proinflammatory state. The pathophysiology of DR provides several therapeutic targets that have the potential to attenuate disease progression. Current novel DR and DME therapies under investigation include erythropoietin-derived peptides, inducers of antioxidant gene expression, activators of nitric oxide/cyclic GMP signaling pathways, and manipulation of arginase activity. This review aims to aid understanding of DR and DME pathophysiology and explore novel therapies that capitalize on our knowledge of these diabetic retinal complications.

5.
Exp Neurol ; 348: 113923, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34780773

RESUMEN

Arginase 1 (A1) is the enzyme that hydrolyzes the amino acid, L-arginine, to ornithine and urea. We have previously shown that A1 deletion worsens retinal ischemic injury, suggesting a protective role of A1. In this translational study, we aimed to study the utility of systemic pegylated A1 (PEG-A1, recombinant human arginase linked to polyethylene glycol) treatment in mouse models of acute retinal and brain injury. Cohorts of WT mice were subjected to retinal ischemia-reperfusion (IR) injury, traumatic optic neuropathy (TON) or brain cerebral ischemia via middle cerebral artery occlusion (MCAO) and treated with intraperitoneal injections of PEG-A1 or vehicle (PEG only). Drug penetration into retina and brain tissues was measured by western blotting and immunolabeling for PEG. Neuroprotection was measured in a blinded fashion by quantitation of NeuN (neuronal marker) immunolabeling of retina flat-mounts and brain infarct area using triphenyl tetrazolium chloride (TTC) staining. Furthermore, ex vivo retina explants and in vitro retina neuron cultures were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (R) and treated with PEG-A1. PEG-A1 given systemically did not cross the intact blood-retina/brain barriers in sham controls but reached the retina and brain after injury. PEG-A1 provided neuroprotection after retinal IR injury, TON and cerebral ischemia. PEG-A1 treatment was also neuroprotective in retina explants subjected to OGD/R but did not improve survival in retinal neuronal cultures exposed to OGD/R. In summary, systemic PEG-A1 administration is neuroprotective and provides an excellent route to deliver the drug to the retina and the brain after acute injury.


Asunto(s)
Arginasa/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Retina/lesiones , Animales , Arginasa/farmacocinética , Barrera Hematoencefálica , Barrera Hematorretinal , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Humanos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacocinética , Traumatismos del Nervio Óptico/tratamiento farmacológico , Polietilenglicoles , Proteínas Recombinantes/uso terapéutico , Daño por Reperfusión/prevención & control , Retina/metabolismo
6.
Redox Biol ; 28: 101336, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31590045

RESUMEN

The retinal pigment epithelium (RPE) is consistently exposed to high levels of pro-oxidant and inflammatory stimuli. As such, under normal conditions the antioxidant machinery in the RPE cell is one of the most efficient in the entire body. However, antioxidant defense mechanisms are often impacted negatively by the process of aging and/or degenerative disease leaving RPE susceptible to damage which contributes to retinal dysfunction. Thus, understanding better the mechanisms governing antioxidant responses in RPE is critically important. Here, we evaluated the role of the redox sensitive microRNA miR-144 in regulation of antioxidant signaling in human and mouse RPE. In cultured human RPE, miR-144-3p and miR-144-5p expression was upregulated in response to pro-oxidant stimuli. Likewise, overexpression of miR-144-3p and -5p using targeted miR mimics was associated with reduced expression of Nrf2 and downstream antioxidant target genes (NQO1 and GCLC), reduced levels of glutathione and increased RPE cell death. Alternately, some protection was conferred against the above when miR-144-3p and miR-144-5p expression was suppressed using antagomirs. Expression analyses revealed a higher conservation of miR-144-3p expression across species and additionally, the presence of two potential Nrf2 binding sites in the 3p sequence compared to only one in the 5p sequence. Thus, we evaluated the impact of miR-144-3p expression in the retinas of mice in which a robust pro-oxidant environment was generated using sodium iodate (SI). Subretinal injection of miR-144-3p antagomir in SI mice preserved retinal integrity and function, decreased oxidative stress, limited apoptosis and enhanced antioxidant gene expression. Collectively, the present work establishes miR-144 as a potential target for preventing and treating degenerative retinal diseases in which oxidative stress is paramount and RPE is prominently affected (e.g., age-related macular degeneration and diabetic retinopathy).


Asunto(s)
Antioxidantes/metabolismo , MicroARNs/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal , Regiones no Traducidas 3' , Animales , Línea Celular , Humanos , Masculino , Ratones , Modelos Biológicos , Interferencia de ARN , Degeneración Retiniana/patología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA