Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 6(8): 2059-2074, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38633046

RESUMEN

In this work, a non-precious group metal (non-PGM) electrocatalyst based on transition metals is introduced as a promising solution for enhancing the efficiency of direct methanol fuel cell (DMFC). Nickel-cobalt mixed tungstate was prepared using a simple co-precipitation method with different molar ratios of Ni, Co and W. The prepared materials were tested and validated using different characterization techniques. It was observed using SEM that the materials are agglomerated amorphous random circular nanocomposite structures. The electrochemical performance of the prepared electrocatalysts revealed that the best nanocomposite was the one with the Ni : Co : W ratio of 1 : 1 : 1.5 (W1.5). This composite showed a higher current density of 229 mA cm-2 towards methanol oxidation at a scan rate of 50 mV s-1 in 1 M methanol at 0.6 V, with the lowest onset potential of 0.33 V. The obtained results present a new strong non-PGM material for direct methanol electro-oxidation reactions and open new doors for economic and earth-abundant electrocatalysts as an alternative to expensive commercially available catalysts.

2.
Artif Cells Nanomed Biotechnol ; 52(1): 131-144, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38423087

RESUMEN

Most fungal bone and joint infections (arthritis) are caused by Mucormycosis (Mucor indicus). These infections may be difficult to treat and may lead to chronic bone disorders and disabilities, thus the use of new antifungal materials in bone disorders is vital, particularly in immunocompromised individuals, such as those who have contracted coronavirus disease 2019 (COVID-19). Herein, we reported for the first time the preparation of nitrogen-doped carbon quantum dots (N/CQDs) and a nitrogen-doped mesoporous carbon (N/MC) using a quick micro-wave preparation and hydrothermal approach. The structure and morphology were analysed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and surface area analyser. Minimum inhibitory concentration (MIC), disc diffusion tests, minimum fungicidal concentration (MFC) and antifungal inhibitory percentages were measured to investigate the antifungal activity of N/CQDs and N/MC nanostructures. In addition to the in vivo antifungal activity in rats as determined by wound induction and infection, pathogen count and histological studies were also performed. According to in vitro and in vivo testing, both N/CQDs with small size and N/MC with porous structure had a significant antifungal impact on a variety of bone-infecting bacteria, including Mucor infection. In conclusion, the present investigation demonstrates that functional N/CQDs and N/MC are effective antifungal agents against a range of microbial pathogenic bone disorders in immunocompromised individuals, with stronger and superior fungicidal activity for N/CQDs than N/MC in vitro and in vivo studies.


Asunto(s)
Mucormicosis , Puntos Cuánticos , Ratas , Animales , Puntos Cuánticos/química , Antifúngicos/farmacología , Carbono/farmacología , Carbono/química , Nitrógeno/química
3.
Nanoscale Adv ; 5(20): 5499-5512, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37822908

RESUMEN

The development of metal-free supercapacitor electrodes with a high energy density is a crucial requirement in the global shift towards sustainable energy sources and industrial pursuit of an optimal supercapacitor. Indeed, from an industrial perspective, time assumes a paramount role in the manufacturing process. A majority of synthesis methods employed for the fabrication of carbon xerogel-based supercapacitor electrodes are characterized by prolonged durations, and result in relatively poor energy and power density. These limitations hinder their practical applications and impede their widespread manufacturing capabilities. In this study, carbon xerogel-based supercapacitor electrodes were made in the shortest time ever reported by making the condition highly acidic with hydrochloric acid (HCl). Furthermore, the investigation of the effect of HCl concentrations (0.1 M, 0.05 M, and 0.01 M) on the morphology and electrochemical behavior of the prepared samples is reported herein. Interestingly, the highest concentration of HCl developed the highest BET surface area, 1032 m2 g-1, which enforced the capacitive behavior to deliver a specific capacitance of 402 F g-1 at 1 A g-1 and a capacitance retention of 80.8% at a current density of 2 A g-1 in an electrolyte containing 0.5 M H2SO4 + 0.5 M Na2SO4. Moreover, an impressive energy density of 45 W h kg-1 at a power density of 18.2 kW kg-1 was achieved. Interestingly, as the HCl concentration increased, the equivalent series resistance decreased to 3.9 W with carbon xerogel 0.1 M HCl (CX0.1). The superior performance of CX0.1 may be attributed to its enlarged BET surface area, pore volume, pore diameter, and smaller particle size. This work provides a facile approach for the large-scale production of metal-free carbon supercapacitor electrodes with improved performance and stability and opens novel horizons to explore the impacts of many types of catalysts during the carbon xerogel preparation.

4.
Microorganisms ; 11(10)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37894164

RESUMEN

Salmonella spp. is considered one of the most important causes of food-borne illness globally. Poultry and its products are usually incriminated in its spread. Treatment with antibiotics is the first choice to deal with such cases; however, multi-drug resistance and biofilm formation have been recorded in animals and humans. This study aimed to detect the antibiotic profile of isolated traits from different sources and to find innovative alternatives, such as MOFs. A total of 350 samples were collected from randomly selected retailed poultry shops in Beni-Suef Province, Egypt. Their antimicrobial susceptibility against eight different antibiotics was tested, and multi-drug resistance was found in most of them. Surprisingly, promising results toward MOF were detected. Cu/Ni/Co-MOF (MOF3) showed superior antibacterial efficiency to Cu/Ni-MOF (MOF2) and Cu-MOF (MOF1) at p value ≤ 0.01. These findings highlight the tendency of Salmonella spp. to develop MDR to most of the antibiotics used in the field and the need to find new alternatives to overcome it, as well as confirming the ability of the environment to act as a source of human and animal affection.

5.
RSC Adv ; 13(40): 27934-27945, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37736558

RESUMEN

Efficient electrocatalysts, with high tolerance to methanol oxidation, good stability, and acceptable cost are the main requisites for promising direct methanol fuel cell (DMFC) electrode materials. This target can be achieved by the integration of different active materials with unique structures. In this work, a cobalt metal-organic framework (Co-MOF) flower structure was prepared by a hydrothermal method, and then a simple ultrasonication method was employed to anchor carbon nanotubes (CNTs) in between the MOF flower petals and fabricate a Co-MOF/CNT hybrid composite. Different ratios of CNTs were used in the composite preparations, namely 25, 50, and 75 wt% of the composite. The nanocomposites were entirely investigated using different characterization techniques, such as XRD, FTIR, SEM, TEM, and XPS. Comparative electrochemical measurements confirmed that due to the integration of highly conductive CNTs with the porous active fascinating structure of Co-MOF, Co-MOF/50% CNTs exhibited improved electrocatalytic activity with a current density of 35 mA cm-2 at a potential of 0.335 V and a scan rate of 50 mV s-1. The excellent electrochemical activity and stability could be due to the synergy between Co-MOF and the CNTs that conferred adequate active sites for methanol electro-oxidation and a lower equivalent series resistance, as revealed from the electrochemical impedance spectroscopy study. This study opens a new avenue to decrease the utilization of platinum and increase the methanol oxidation activity using low-cost catalysts.

6.
RSC Adv ; 13(37): 26069-26088, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37664207

RESUMEN

In order to achieve sustainable benefits for the adsorption of wastewater pollutants, spent adsorbents need to be recycled and/or valorized. This work studied a two-dimensional (2D) ZnMgFe layered double hydroxide (LDH) for ceftriaxone sodium (CTX) adsorption. This LDH showed a crystallite size of 9.8 nm, a BET surface area of 367.59 m2 g-1, and a micro-sphere-like morphology. The factors investigated in this study were the adsorbent dose, initial concentration, initial pH, and contact time. ZnMgFe LDH showed 99% removal of CTX with a maximum adsorption capacity of 241.75 mg g-1 at pH = 5. The Dubinin-Radushkevich model was found to be the most adequate isotherm model. The spent adsorbent (ZnMgFe LDH/CTX) was reused as an electro-oxidation catalyst for direct methanol fuel cells. ZnMgFe LDH/CTX showed almost a 10-fold increase in electrochemical activity for all scan rates compared to bare ZnMgFe LDH in 1 M KOH. As methanol concentration increases, the maximum current density generated by both the ZnMgFe LDH and ZnMgFe LDH/CTX samples increases. Moreover, the maximum current density for ZnMgFe LDH/CTX was 47 mA cm-2 at a methanol concentration of 3 M. Both samples possess reasonable stability over a 3600 S time window with no significant deterioration of electrochemical performance. Moreover, the antimicrobial studies showed that ZnMgFe LDH had a significant antifungal (especially Aspergillus, Mucor, and Penicillium species) and antibacterial (with greater action against Gram-positive than negative) impact on several severe infectious diseases, including Aspergillus. This study paves the way for the reuse and valorization of selected adsorbents toward circular economy requirements.

7.
Antibiotics (Basel) ; 12(5)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37237702

RESUMEN

The majority of bone and joint infections are caused by Gram-positive organisms, specifically staphylococci. Additionally, gram-negative organisms such as E. coli can infect various organs through infected wounds. Fungal arthritis is a rare condition, with examples including Mucormycosis (Mucor rhizopus). These infections are difficult to treat, making the use of novel antibacterial materials for bone diseases crucial. Sodium titanate nanotubes (NaTNTs) were synthesized using the hydrothermal method and characterized using a Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmission Electron Microscope (HRTEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and Zeta sizer. The antibacterial and antifungal activity of the NaTNT framework nanostructure was evaluated using Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Disc Diffusion assays for bacterial activity, and Minimum Fungicidal Concentration (MFC) for antifungal investigation. In addition to examining in vivo antibacterial activity in rats through wound induction and infection, pathogen counts and histological examinations were also conducted. In vitro and in vivo tests revealed that NaTNT has substantial antifungal and antibacterial effects on various bone-infected pathogens. In conclusion, current research indicates that NaTNT is an efficient antibacterial agent against a variety of microbial pathogenic bone diseases.

8.
RSC Adv ; 13(12): 8090-8100, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36922950

RESUMEN

The slow kinetics of the oxygen reduction reaction (ORR) limits the large-scale usage of the fuel cells. Thus, it is crucial to develop an efficient and stable electrocatalyst for the ORR. Herein, facile synthesis of three-dimensional nitrogen-doped carbon xerogel diamond nanoparticles, CDNPs support is reported. The as-prepared CDNPs support was functionalized with a Keggin-type polyoxomolybdate via the hydrothermal process (POM@CDNPs). As the characterization techniques revealed, this nanocomposite possesses a three-dimensional structure, high density of nitrogen doping, and well-dispersed porous pyramidal morphology of POM, making it a promising catalyst for ORR in alkaline medium. The POM@CDNPs nanocomposite exhibits an outstanding activity for ORR with a limiting current density that reaches -7.30 mA cm-2 at 0.17 V vs. RHE. Moreover, a half-wave potential of 0.773 V is delivered with a stability of about 99.9% after the 100th repetitive cycle as this catalyst forces the ORR to the direct-four-electron pathway. This work spots the advantages of hybridizing the sp3 of the nanodiamond with the sp2 of the carbon xerogels to increase the conductivity of the support material. In addition, the role of the porous pyramidal morphology of the POM on the activity of the nanocomposite was evaluated. This study suggests using advanced carbon-based electro-catalysts with outstanding activity and stability.

9.
Materials (Basel) ; 16(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36770269

RESUMEN

Supercapacitors have the potential to be used in a variety of fields, including electric vehicles, and a lot of research is focused on unique electrode materials to enhance capacitance and stability. Herein, we prepared nickel molybdate/activated carbon (AC) nanocomposites using a facile impregnation method that preserved the carbon surface area. In order to study how the nickel-to-molybdenum ratio affects the efficiency of the electrode, different ratios between Ni-Mo were prepared and tested as supercapacitor electrodes, namely in the following ratios: 1:1, 1:2, 1:3, 1:4, and 1:5. X-ray diffraction, X-ray photoelectron spectroscopy, FESEM, HRTEM, and BET devices were extensively used to analyze the structure of the nanocomposites. The structure of the prepared nickel molybdates was discovered to be 2D hierarchical nanosheets, which functionalized the carbon surface. Among all of the electrodes, the best molar ratio between Ni-Mo was found to be 1:3 NiMo3/AC reaching (541 F·g-1) of specific capacitance at a current density of 1 A·g-1, and 67 W·h·Kg-1 of energy density at a power density of 487 W·Kg-1. Furthermore, after 4000 repetitive cycles at a large current density of 4 A·g-1, an amazing capacitance stability of 97.7% was maintained. This remarkable electrochemical activity for NiMo3/AC could be credited towards its 2D hierarchical structure, which has a huge surface area of 1703 m2·g-1, high pore volume of 0.925 cm3·g-1, and large particle size distribution.

10.
RSC Adv ; 12(48): 31225-31234, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36349020

RESUMEN

Direct ethanol fuel cells have great potential for practical power applications due to their easy operation, high energy density, and low toxicity. However, the slow and incomplete ethanol electrooxidation (EEO) reaction is a major drawback that hinders the development of this type of fuel cell. Here, we report a facile approach for the preparation of highly active, low cost and stable electrocatalysts based on palladium (Pd) nanoparticles and black phosphorus/palladium (BP/Pd) nanohybrids supported on a carbon aerogel (CA). The nanocomposites show remarkable catalytic performance and stability as anode electrocatalysts for EEO in an alkaline medium. A mass peak current density of 8376 mA mgPd -1 is attained for EEO on the BP/Pd/CA catalyst, which is 11.4 times higher than that of the commercial Pd/C catalyst. To gain deep insight into the structure-property relationship associated with superior electroactivity, the catalysts are well characterized in terms of morphology, surface chemistry, and catalytic activity. It is found that the BP-doped CA support provides high catalyst dispersibility, protection against leaching, and modification of the electronic and catalytic properties of Pd, while the catalyst modifies CA into a more open and conductive structure. This synergistic interaction between the support and the catalyst improves the transport of active species and electrons at the electrode/electrolyte interface, leading to rapid EEO reaction kinetics.

11.
Nanoscale Adv ; 4(3): 837-848, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36131831

RESUMEN

The innovative design and facile synthesis of efficient and stable electrocatalysts for the oxygen reduction reaction (ORR) are crucial in the field of fuel cells. Herein, the facile synthesis of an iron oxide@nitrogen-doped carbon diamond (FeO x @NCD) composite via an effective pyrolysis strategy is reported. The properties of this electrocatalyst, including a high density of active sites, nitrogen doping, accessible surface area, well dispersed pyramidal morphology of the iron oxide, and the porous structure of the carbon matrix, promote a highly active oxygen reduction reaction (ORR) performance. The electrocatalyst exhibits outstanding stability, with a half-wave potential of 0.692 V in alkaline solution (0.1 M KOH), as well as a limiting current density of -31.5 mA cm-2 at 0.17 V vs. RHE. This study highlights the benefits of hybridizing sp2 carbon xerogel and sp3 diamond carbon allotropes with iron oxide to boost the ORR activity. The proposed strategy opens up an avenue for designing advanced carbon-supported metal oxide catalysts that exhibit excellent electrocatalytic performance.

12.
Front Pediatr ; 10: 918547, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899137

RESUMEN

Pregnancy and childbirth on anticoagulants after mechanical heart valve replacement present a high risk of complications for both mother and baby. On top of pregnancy worsening the mother's cardiac function, anticoagulant therapy itself is a crucial problem. A safe and effective anticoagulation regimen for both mother and fetus is not possible. The most effective drugs for preventing valve thrombosis are VKAs, whose dosage needs to be adjusted with frequent INR checks. Moreover, VKAs can have embryopathic and teratogenic action. Patients in follow-up and anticoagulant treatment at the Salam Centre for Cardiac Surgery in Sudan live spread out over a large area where transport to the Center is generally difficult; pregnancy treatment has, therefore, been adapted to the limitations of reality. Pregnancy is discouraged and contraception and therapeutic abortion are recommended, but this guidance frequently goes unheeded. Here we describe maternal and fetal outcomes in 307 consecutive pregnancies recorded by staff at the oral anticoagulant clinic (OAC) from April 2017 to November 2021. Out of 307 pregnancies, there were 15 maternal deaths (4.9%), 24 thrombotic events (7.8%) and 22 major bleedings (7.2%). Fifty pregnancies (16.3%) were terminated by therapeutic abortion. Only 47.6% of pregnancies had good maternal and neonatal outcomes. Data clearly show that, due to the complexity of pregnancy in women with mechanical heart valves and the scarcity of tertiary healthcare services in the area where patients live, maternal mortality is at an unacceptable level and requires a structured, multi-disciplinary intervention.

13.
Materials (Basel) ; 14(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34947310

RESUMEN

This work shows the preparation of carbon nanospheres with a high superficial nitrogen content (7 wt.%), obtained by a simple hydrothermal method, from pyrocatechol and formaldehyde, around which tungsten nanophases have been formed. One of these nanophases is tungsten carbide, whose electro-catalytic behavior in the ORR has been evaluated together with the presence of nitrogen surface groups. Both current and potential kinetic density values improve considerably with the presence of tungsten, despite the significant nitrogen loss detected during the carbonization treatment. However, the synergetic effect that the WC has with other electro-catalytic metals in this reaction cannot be easily evaluated with the nitrogen in these materials, since both contents vary in opposite ways. Nevertheless, all the prepared materials carried out oxygen electro-reduction by a mixed pathway of two and four electrons, showing remarkable electro-catalytic behavior.

14.
Materials (Basel) ; 14(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576486

RESUMEN

Layered double hydroxides (LDHs) have emerged as promising electrodes materials for the methanol oxidation reaction. Here, we report on the preparation of different LDHs with the hydrothermal process. The effect of the divalent cation (i.e., Ni, Co, and Zn) on the electrochemical performance of methanol oxidation was investigated. Moreover, nanocomposites of LDHs and carbon xerogels (CX) supported on nickel foam (NF) substrate were prepared to investigate the role of carbon xerogel. The results show that NiFe-LDH/CX/NF is an efficient electrocatalyst for methanol oxidation with a current density that reaches 400 mA·m-2 compared to 250 and 90 mA·cm-2 for NiFe-LDH/NF and NF, respectively. In addition, all LDH/CX/NF nanocomposites show excellent stability for methanol oxidation. A clear relationship is observed between the electrodes crystallite size and their activity to methanol oxidation. The smaller the crystallite size, the higher the current density delivered. Additionally, the presence of carbon xerogel in the nanocomposites offer 3D interconnected micro/mesopores, which facilitate both mass and electron transport.

15.
Materials (Basel) ; 13(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142879

RESUMEN

Introducing new inexpensive materials for supercapacitors application with high energy density and stability, is the current research challenge. In this work, Silver doped carbon xerogels have been synthesized via a simple sol-gel method. The silver doped carbon xerogels are further surface functionalized with different loadings of nickel cobaltite (1 wt.%, 5 wt.%, and 10 wt.%) using a facile impregnation process. The morphology and textural properties of the obtained composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen physisorption analysis. The silver doped carbon xerogels display a higher surface area and larger mesopore volume compared to the un-doped carbon xerogels and hierarchically porous structure is obtained for all materials. The hybrid composites have been utilized as electrode materials for symmetric supercapacitors in 6 M KOH electrolyte. Among all the hybrid composites, silver doped carbon xerogel functionalized with 1 wt.% nickel cobaltite (NiCo1/Ag-CX) shows the best supercapacitor performance: high specific capacitance (368 F g-1 at 0.1 A g-1), low equivalent series resistance (1.9 Ω), high rate capability (99% capacitance retention after 2000 cycles at 1 A g-1), and high energy and power densities (50 Wh/Kg, 200 W/Kg at 0.1 A g-1). It is found that the specific capacitance does not only depend on surface area, but also on others factors such as particle size, uniform particle distribution, micro-mesoporous structure, which contribute to abundant active sites and fast charge, and ion transfer rates between the electrolyte and the active sites.

16.
Materials (Basel) ; 13(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785141

RESUMEN

A series of carbon xerogels doped with cobalt, nickel, and iron have been prepared through the sol-gel method. The doped carbon xerogels were further functionalized with binary and ternary transition metal oxides containing Co, Ni, and Zn oxides by the hydrothermal method. A development in the mesopore volume is achieved for functionalized carbon xerogel doped with iron. However, in the functionalization of carbon xerogel with ternary metal oxides, a reduction in pore diameter and mesopore volume is found. In addition, all functionalized metal oxides/carbon are in the form of 3D nanobundles with different lengths and widths. The prepared samples have been tested as electrocatalysts for oxygen reduction reaction (ORR) in basic medium. All composites showed excellent oxygen reduction reaction activity; the low equivalent series resistance of the Zn-Ni-Co/Co-CX composite was especially remarkable, indicating high electronic conductivity. It has been established that the role of Zn in this type of metal oxides nanobundles-based ORR catalyst is not only positive, but its effect could be enhanced by the presence of Ni.

17.
Materials (Basel) ; 12(15)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370331

RESUMEN

A total of two carbon xerogels doped with cobalt and nickel were prepared by the sol-gel method. The obtained carbon xerogels underwent further surface modification with three binary metal oxides namely: nickel cobaltite, nickel ferrite, and cobalt ferrite through the hydrothermal method. The mesopore volumes of these materials ranged between 0.24 and 0.40 cm3/g. Moreover, there was a morphology transformation for the carbon xerogels doped with nickel cobaltite, which is in the form of nano-needles after the hydrothermal process. Whereas the carbon xerogels doped with nickel ferrite and cobalt ferrite maintained the normal carbon xerogel structure after the hydrothermal process. The prepared materials were tested as electrocatalysts for oxygen reduction reaction using 0.1 M KOH. Among the prepared carbon xerogels cobalt-doped carbon xerogel had better electrocatalytic performance than the nickel-doped ones. Moreover, the carbon xerogels doped with nickel cobaltite showed excellent activity for oxygen reduction reaction due to mesoporosity development. NiCo2O4/Co-CX showed to be the best electrocatalyst of all the prepared electrocatalysts for oxygen reduction reaction application, exhibiting the highest electrocatalytic activity, lowest onset potential Eonset of -0.06 V, and the lowest equivalent series resistance (ESR) of 2.74 Ω.

18.
Nanomaterials (Basel) ; 8(4)2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-29690602

RESUMEN

A series of carbon aerogels doped with iron, cobalt and nickel have been prepared. Metal nanoparticles very well dispersed into the carbon matrix catalyze the formation of graphitic clusters around them. Samples with different Ni content are obtained to test the influence of the metal loading. All aerogels have been characterized to analyze their textural properties, surface chemistry and crystal structures. These metal-doped aerogels have a very well-developed porosity, making their mesoporosity remarkable. Ni-doped aerogels are the ones with the largest surface area and the smallest graphitization. They also present larger mesopore volumes than Co- and Fe-doped aerogels. These materials are tested as electro-catalysts for the oxygen reduction reaction. Results show a clear and strong influence of the carbonaceous structure on the whole electro-catalytic behavior of the aerogels. Regarding the type of metal doping, aerogel doped with Co is the most active one, followed by Ni- and Fe-doped aerogels, respectively. As the Ni content is larger, the kinetic current densities increase. Comparatively, among the different doping metals, the results obtained with Ni are especially remarkable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...