Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38808682

RESUMEN

Recombination is a key mechanism in breeding for promoting genetic variability. Multiparental populations (MPPs) constitute an excellent platform for precise genotype phasing, identification of genome-wide crossovers (COs), estimation of recombination frequencies, and construction of recombination maps. Here, we introduce haploMAGIC, a pipeline to detect COs in MPPs with single-nucleotide polymorphism (SNP) data by exploiting the pedigree relationships for accurate genotype phasing and inference of grandparental haplotypes. haploMAGIC applies filtering to prevent false-positive COs due to genotyping errors (GEs), a common problem in high-throughput SNP analysis of complex plant genomes. Hence, it discards haploblocks not reaching a specified minimum number of informative alleles. A performance analysis using populations simulated with AlphaSimR revealed that haploMAGIC improves upon existing methods of CO detection in terms of recall and precision, most notably when GE rates are high. Furthermore, we constructed recombination maps using haploMAGIC with high-resolution genotype data from 2 large multiparental populations of winter rapeseed (Brassica napus). The results demonstrate the applicability of the pipeline in real-world scenarios and showed good correlations in recombination frequency compared with alternative software. Therefore, we propose haploMAGIC as an accurate tool at CO detection with MPPs that shows robustness against GEs.


Asunto(s)
Técnicas de Genotipaje , Haplotipos , Polimorfismo de Nucleótido Simple , Recombinación Genética , Técnicas de Genotipaje/métodos , Brassica napus/genética , Programas Informáticos , Genotipo , Genoma de Planta , Intercambio Genético
2.
Plants (Basel) ; 11(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36235399

RESUMEN

Improvement of grain yield is the ultimate goal for wheat breeding under water-limited environments. In the present study, a high-density linkage map was developed by using genotyping-by-sequencing (GBS) of a recombinant inbred line (RIL) population derived from the cross between Iranian landrace #49 and cultivar Yecora Rojo. The population was evaluated in three locations in Iran during two years under irrigated and water deficit conditions for the agronomic traits grain yield (GY), plant height (PH), spike number per square meter (SM), 1000 kernel weight (TKW), grain number per spike (GNS), spike length (SL), biomass (BIO) and harvest index (HI). A linkage map was constructed using 5831 SNPs assigned to 21 chromosomes, spanning 3642.14 cM of the hexaploid wheat genome with an average marker density of 0.62 (markers/cM). In total, 85 QTLs were identified on 19 chromosomes (all except 5D and 6D) explaining 6.06-19.25% of the traits phenotypic variance. We could identify 20 novel QTLs explaining 8.87-19.18% of phenotypic variance on chromosomes 1A, 1B, 1D, 2B, 3A, 3B, 6A, 6B and 7A. For 35 out of 85 mapped QTLs functionally annotated genes were identified which could be related to a potential role in drought stress.

3.
Plants (Basel) ; 9(11)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182545

RESUMEN

The proper distribution of the hormone auxin is essential for plant development. It is channeled by auxin efflux carriers of the PIN family, typically asymmetrically located on the plasma membrane (PM). Several studies demonstrated that some PIN transporters are also located at the endoplasmic reticulum (ER). From the PM-PINs, they differ in a shorter internal hydrophilic loop, which carries the most important structural features required for their subcellular localization, but their biological role is otherwise relatively poorly known. We discuss how ER-PINs take part in maintaining intracellular auxin homeostasis, possibly by modulating the internal levels of IAA; it seems that the exact identity of the metabolites downstream of ER-PINs is not entirely clear as well. We further review the current knowledge about their predicted structure, evolution and localization. Finally, we also summarize their role in plant development.

4.
Sci Rep ; 10(1): 19165, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154389

RESUMEN

Natural and mass selection during domestication and cultivation favored particular traits of interest in barley. In the present study, population structure, and genetic relationships among 144 accessions of barley landraces and breeding materials from various countries were studied using a set of 77 and 72 EST-SSR and gSSR markers, respectively distributed on seven chromosomes of barley. In total, 262 and 429 alleles were amplified in 77 EST-SSRs and 72 gSSR loci, respectively. Out of which, 185 private/group-specific alleles were identified in the landraces compared with 14 in "cultivar and advanced breeding lines", indicating the possibility to introgress favorite alleles from landraces into breeding materials. Comparative analysis of genetic variation among breeding materials, Iranian landraces, and exotic landraces revealed higher genetic diversity in Iranian landraces compared with others. A total of 37, 15, and 14 private/group-specific alleles were identified in Iranian landraces, exotic landraces, and breeding materials, respectively. The most likely groups for 144 barley genotypes were three as inferred using model- and distance-based clustering as well as principal coordinate analysis which assigned the landraces and breeding materials into separate groups. The distribution of alleles was found to be correlated with population structure, domestication history and eco-geographical factors. The high allelic richness in the studied set of barley genotype provides insights into the available diversity and allows the construction of core groups based on maximizing allelic diversity for use in barley breeding programs.


Asunto(s)
Alelos , Cruzamiento , Variación Genética , Genotipo , Hordeum/genética , Genoma de Planta , Repeticiones de Microsatélite
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...