Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 8(6): 2309-2318, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37224474

RESUMEN

We adapted an existing, spaceflight-proven, robust "electronic nose" (E-Nose) that uses an array of electrical resistivity-based nanosensors mimicking aspects of mammalian olfaction to conduct on-site, rapid screening for COVID-19 infection by measuring the pattern of sensor responses to volatile organic compounds (VOCs) in exhaled human breath. We built and tested multiple copies of a hand-held prototype E-Nose sensor system, composed of 64 chemically sensitive nanomaterial sensing elements tailored to COVID-19 VOC detection; data acquisition electronics; a smart tablet with software (App) for sensor control, data acquisition and display; and a sampling fixture to capture exhaled breath samples and deliver them to the sensor array inside the E-Nose. The sensing elements detect the combination of VOCs typical in breath at parts-per-billion (ppb) levels, with repeatability of 0.02% and reproducibility of 1.2%; the measurement electronics in the E-Nose provide measurement accuracy and signal-to-noise ratios comparable to benchtop instrumentation. Preliminary clinical testing at Stanford Medicine with 63 participants, their COVID-19-positive or COVID-19-negative status determined by concomitant RT-PCR, discriminated between these two categories of human breath with a 79% correct identification rate using "leave-one-out" training-and-analysis methods. Analyzing the E-Nose response in conjunction with body temperature and other non-invasive symptom screening using advanced machine learning methods, with a much larger database of responses from a wider swath of the population, is expected to provide more accurate on-the-spot answers. Additional clinical testing, design refinement, and a mass manufacturing approach are the main steps toward deploying this technology to rapidly screen for active infection in clinics and hospitals, public and commercial venues, or at home.


Asunto(s)
COVID-19 , Nanoestructuras , Compuestos Orgánicos Volátiles , Animales , Humanos , Nariz Electrónica , Reproducibilidad de los Resultados , COVID-19/diagnóstico , Pruebas Respiratorias/métodos , Compuestos Orgánicos Volátiles/análisis , Mamíferos
2.
Macromol Rapid Commun ; 40(19): e1900098, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31328312

RESUMEN

The directed assembly of conjugated polymers into macroscopic organization with controlled orientation and placement is pivotal in improving device performance. Here, the supramolecular assembly of oriented spherulitic crystals of poly(3-butylthiophene) surrounding a single carbon nanotube fiber under controlled solvent evaporation of solution-cast films is reported. Oriented lamellar structures nucleate on the surface of the nanotube fiber in the form of a transcrystalline interphase. The factors influencing the formation of transcrystals are investigated in terms of chemical structure, crystallization temperature, and time. Dynamic process measurements exhibit the linear growth of transcrystals with time. Microstructural analysis of transcrystals reveals individual lamellar organization and crystal polymorphism. The form II modification occurs at low temperatures, while both form I and form II modifications coexist at high temperatures. A possible model is presented to interpret transcrystallization and polymorphism.


Asunto(s)
Nanotubos de Carbono/química , Polímeros/química , Cristalización , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Tamaño de la Partícula
3.
ACS Appl Mater Interfaces ; 7(24): 13620-6, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26058086

RESUMEN

Interfacial interactions between the polymer and graphene are pivotal in determining the reinforcement efficiency in the graphene-enhanced polymer nanocomposites. Here, we report on the dynamic process of graphene-induced oriented interfacial crystals of isotactic polypropylene (iPP) in the single fiber polymer composites by means of polarized optical microscopy (POM) and scanning electron microscopy (SEM). The graphene fibers are obtained by chemical reduction of graphene oxide fibers, and the latter is produced from the liquid crystalline dispersion of graphene oxide via a wet coagulation route. The lamellar crystals of iPP grow perpendicular to the fiber axis, forming an oriented transcrystalline (TC) interphase surrounding the graphene fiber. Various factors including the diameter of graphene fibers, crystallization temperature, and time are investigated. The dynamic process of polymer transcrystallization surrounding the graphene fiber is studied in the temperature range 124-132 °C. The Lauritzen-Hoffman theory of heterogeneous nucleation is applied to analyze the transcrystallization process, and the fold surface free energy is determined. Study into microstructures demonstrates a cross-hatched lamellar morphology of the TC interphase and the strong interfacial adhesion between the iPP and graphene. Under appropriate conditions, the ß-form transcrystals occur whereas the α-form transcrystals are predominant surrounding the graphene fibers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...