Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 777: 146079, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33684747

RESUMEN

Coral larval settlement patterns are influenced by a vast array of factors; however, the relative roles of individual factors are rarely tested in isolation, leading to confusion about which are most crucial for settlement. For example, direct effects of the light environment are often cited as a major factor influencing settlement patterns, yet this has not been demonstrated under environmentally realistic lighting regimes in the absence of confounding factors. Here we apply programmable multispectral lights to create realistic light spectra, while removing correlating (but not obvious) factors that are common in laboratory settlement experiments. Using two common species of Acropora - key framework builders of the Great Barrier Reef - we find little evidence that light intensity or changes in the spectral profile play a substantial role in larval settlement under most environmentally realistic settings but can under more extreme or artificial settings. We alternatively hypothesise and provide evidence that chronic light conditions and recent sediment exposures that impact benthic substrates (e.g., crustose coralline algae) have a greater impact on settlement success. Under these conditions, there was a decrease of up to 74% settlement success. Management of water quality conditions that impact the quality of benthic-settlement substrates therefore should present a priority area of focus for improving coral recruitment.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Larva , Luz , Calidad del Agua
2.
Nat Commun ; 10(1): 4134, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515490

RESUMEN

Anthropogenic CO2 emissions are causing ocean acidification, which can affect the physiology of marine organisms. Here we assess the possible effects of ocean acidification on the metabolic potential of sponge symbionts, inferred by metagenomic analyses of the microbiomes of two sponge species sampled at a shallow volcanic CO2 seep and a nearby control reef. When comparing microbial functions between the seep and control sites, the microbiome of the sponge Stylissa flabelliformis (which is more abundant at the control site) exhibits at the seep reduced potential for uptake of exogenous carbohydrates and amino acids, and for degradation of host-derived creatine, creatinine and taurine. The microbiome of Coelocarteria singaporensis (which is more abundant at the seep) exhibits reduced potential for carbohydrate import at the seep, but greater capacity for archaeal carbon fixation via the 3-hydroxypropionate/4-hydroxybutyrate pathway, as well as archaeal and bacterial urea production and ammonia assimilation from arginine and creatine catabolism. Together these metabolic features might contribute to enhanced tolerance of the sponge symbionts, and possibly their host, to ocean acidification.


Asunto(s)
Ácidos/química , Redes y Vías Metabólicas , Microbiota , Océanos y Mares , Poríferos/microbiología , Animales , Carbono/metabolismo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Genes Bacterianos , Nitrógeno/metabolismo , Poríferos/genética , Azufre/metabolismo
3.
Sci Total Environ ; 695: 133837, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31422324

RESUMEN

Sponges are important components of many marine communities and perform key functional roles. Little is known on the processes that drive larval dispersal and habitat selection in sponges, and in particular under stress scenarios. The increase in sediment in the marine environment is a growing concern for the health of ecosystems, but scarce information exists on the effects of sediment on sponge larvae. This study assessed the effects of suspended and deposited sediment on the larva of Carteriospongia foliascens. A suspended sediment concentration (SSC) of 100 mg L-1 caused homogenisation of the natural pattern of phototactic responses, leading to 100% of photonegative behaviours and a reduction of swim speeds by 27%. After 24 h exposure to suspended sediments, fine particles were found attached to larval cilia, causing abnormal swimming behaviours. Larvae did not have the ability to remove the attached sediment that led to a transformation of the larval body into a cocoon-like morphology and death. Mortality tripled from 3 mg L-1 (9%) to 300 mg L-1 (30%) and the relative SSC EC10 and EC50 values corresponded to 2.6 mg L-1 and 17.6 mg L-1 respectively. Survival, as determined by live swimming larvae, exceeded 50% even in the highest SSC of 300 mg L-1, however settlement success decreased by ~20%. Larvae were able to settle onto substrate having deposited sediment levels (DSLs) up to 3 mg cm-2 (~24%), but recorded a 25 × chance of dislodgement compared to settlers on substrate with DSL of 0.3 mg cm-2. Larvae avoided settling onto substrates with DSLs >10 mg cm-2 and preferentially settled onto alternative vertical substrate that were free of sediment. While C. foliascens larvae have some ability to survive and settle through conditions of elevated sediment, detrimental effects are also clear.


Asunto(s)
Sedimentos Geológicos , Poríferos/fisiología , Animales , Monitoreo del Ambiente , Contaminantes del Agua
4.
PeerJ ; 5: e3904, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29158962

RESUMEN

Terrestrial runoff, resuspension events and dredging can affect filter-feeding sponges by elevating the concentration of suspended sediments, reducing light intensity, and smothering sponges with sediments. To investigate how sponges respond to pressures associated with increased sediment loads, the abundant and widely distributed Indo-Pacific species Ianthella basta was exposed to elevated suspended sediment concentrations, sediment deposition, and light attenuation for 48 h (acute exposure) and 4 weeks (chronic exposure). In order to visualise the response mechanisms, sponge tissue was examined by 3D X-ray microscopy and scanning electron microscopy (SEM). Acute exposures resulted in sediment rapidly accumulating in the aquiferous system of I. basta, although this sediment was fully removed within three days. Sediment removal took longer (>2 weeks) following chronic exposures, and I. basta also exhibited tissue regression and a smaller aquiferous system. The application of advanced imaging approaches revealed that I. basta employs a multilevel system for sediment rejection and elimination, containing both active and passive components. Sponges responded to sediment stress through (i) mucus production, (ii) exclusion of particles by incurrent pores, (iii) closure of oscula and pumping cessation, (iv) expulsion of particles from the aquiferous system, and (v) tissue regression to reduce the volume of the aquiferous system, thereby entering a dormant state. These mechanisms would result in tolerance and resilience to exposure to variable and high sediment loads associated with both anthropogenic impacts like dredging programs and natural pressures like flood events.

5.
Mar Pollut Bull ; 122(1-2): 176-193, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28666595

RESUMEN

Changes in turbidity, sedimentation and light over a two year large scale capital dredging program at Onslow, northwestern Australia, were quantified to assess their effects on filter feeder communities, in particular sponges. Community functional morphological composition was quantified using towed video surveys, while dive surveys allowed for assessments of species composition and chlorophyll content. Onslow is relatively diverse recording 150 sponge species. The area was naturally turbid (1.1 mean P80 NTU), with inshore sites recording 6.5× higher turbidity than offshore localities, likely influenced by the Ashburton River discharge. Turbidity and sedimentation increased by up to 146% and 240% through dredging respectively, with corresponding decreases in light levels. The effects of dredging was variable, and despite existing caveats (i.e. bleaching event and passing of a cyclone), the persistence of sponges and the absence of a pronounced response post-dredging suggest environmental filtering or passive adaptation acquired pre-dredging may have benefited these communities.


Asunto(s)
Monitoreo del Ambiente , Poríferos , Animales , Australia , Sedimentos Geológicos , Dinámica Poblacional , Ríos
6.
PLoS One ; 9(5): e98181, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24853091

RESUMEN

Sponges (Phylum Porifera) are an evolutionary and ecologically significant group; however information on processes influencing sponge population distributions is surprisingly limited. Carteriospongia foliascens is a common Indo-Pacific sponge, which has been reported from the intertidal to the mesophotic. Interestingly, the distribution of C. foliascens at inshore reefs of the Great Barrier Reef is restricted to the intertidal with no individuals evident in adjacent subtidal habitats. The abundance of C. foliascens and substrate availability was first quantified to investigate the influence of substrate limitation on adult distribution. Pre-settlement processes of larval spawning, swimming speeds, phototaxis, vertical migration, and settlement to intertidal and subtidal substrate cues were also quantified. Notably, suitable settlement substrate (coral rubble) was not limiting in subtidal habitats. C. foliascens released up to 765 brooded larvae sponge(-1) day(-1) during the day, with larvae (80%±5.77) being negatively phototactic and migrating to the bottom within 40 minutes from release. Subsequently, larvae (up to 58.67%±2.91) migrated to the surface after the loss of the daylight cue (nightfall), and after 34 h post-release >98.67% (±0.67) of larvae had adopted a benthic habit regardless of light conditions. Intertidal and subtidal biofilms initiated similar settlement responses, inducing faster (as early 6 h post-release) and more successful metamorphosis (>60%) than unconditioned surfaces. C. foliascens has a high larval supply and larval behaviours that support recruitment to the subtidal. The absence of C. foliascens in subtidal habitats at inshore reefs is therefore proposed to be a potential consequence of post-settlement mortalities.


Asunto(s)
Arrecifes de Coral , Larva/fisiología , Poríferos/crecimiento & desarrollo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...