Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Toxicol ; 6: 1390196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903859

RESUMEN

Toxicants with the potential to bioaccumulate in humans and animals have long been a cause for concern, particularly due to their association with multiple diseases and organ injuries. Per- and polyfluoro alkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH) are two such classes of chemicals that bioaccumulate and have been associated with steatosis in the liver. Although PFAS and PAH are classified as chemicals of concern, their molecular mechanisms of toxicity remain to be explored in detail. In this study, we aimed to identify potential mechanisms by which an acute exposure to PFAS and PAH chemicals can induce lipid accumulation and whether the responses depend on chemical class, dose, and sex. To this end, we analyzed mechanisms beginning with the binding of the chemical to a molecular initiating event (MIE) and the consequent transcriptomic alterations. We collated potential MIEs using predictions from our previously developed ToxProfiler tool and from published steatosis adverse outcome pathways. Most of the MIEs are transcription factors, and we collected their target genes by mining the TRRUST database. To analyze the effects of PFAS and PAH on the steatosis mechanisms, we performed a computational MIE-target gene analysis on high-throughput transcriptomic measurements of liver tissue from male and female rats exposed to either a PFAS or PAH. The results showed peroxisome proliferator-activated receptor (PPAR)-α targets to be the most dysregulated, with most of the genes being upregulated. Furthermore, PFAS exposure disrupted several lipid metabolism genes, including upregulation of fatty acid oxidation genes (Acadm, Acox1, Cpt2, Cyp4a1-3) and downregulation of lipid transport genes (Apoa1, Apoa5, Pltp). We also identified multiple genes with sex-specific behavior. Notably, the rate-limiting genes of gluconeogenesis (Pck1) and bile acid synthesis (Cyp7a1) were specifically downregulated in male rats compared to female rats, while the rate-limiting gene of lipid synthesis (Scd) showed a PFAS-specific upregulation. The results suggest that the PPAR signaling pathway plays a major role in PFAS-induced lipid accumulation in rats. Together, these results show that PFAS exposure induces a sex-specific multi-factorial mechanism involving rate-limiting genes of gluconeogenesis and bile acid synthesis that could lead to activation of an adverse outcome pathway for steatosis.

2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542239

RESUMEN

Animal studies are typically utilized to understand the complex mechanisms associated with toxicant-induced hepatotoxicity. Among the alternative approaches to animal studies, in vitro pooled human hepatocytes have the potential to capture population variability. Here, we examined the effect of the hepatotoxicant thioacetamide on pooled human hepatocytes, divided into five lots, obtained from forty diverse donors. For 24 h, pooled human hepatocytes were exposed to vehicle, 1.33 mM (low dose), and 12 mM (high dose) thioacetamide, followed by RNA-seq analysis. We assessed gene expression variability using heat maps, correlation plots, and statistical variance. We used KEGG pathways and co-expression modules to identify underlying physiological processes/pathways. The co-expression module analysis showed that the majority of the lots exhibited activation for the bile duct proliferation module. Despite lot-to-lot variability, we identified a set of common differentially expressed genes across the lots with similarities in their response to amino acid, lipid, and carbohydrate metabolism. We also examined efflux transporters and found larger lot-to-lot variability in their expression patterns, indicating a potential for alteration in toxicant bioavailability within the cells, which could in turn affect the gene expression patterns between the lots. Overall, our analysis highlights the challenges in using pooled hepatocytes to understand mechanisms of toxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Tioacetamida , Animales , Humanos , Tioacetamida/toxicidad , Hígado/metabolismo , Hepatocitos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
3.
ACS Omega ; 8(24): 21853-21861, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360478

RESUMEN

The bile salt export pump (BSEP) is a key transporter involved in the efflux of bile salts from hepatocytes to bile canaliculi. Inhibition of BSEP leads to the accumulation of bile salts within the hepatocytes, leading to possible cholestasis and drug-induced liver injury. Screening for and identification of chemicals that inhibit this transporter aid in understanding the safety liabilities of these chemicals. Moreover, computational approaches to identify BSEP inhibitors provide an alternative to the more resource-intensive, gold standard experimental approaches. Here, we used publicly available data to develop predictive machine learning models for the identification of potential BSEP inhibitors. Specifically, we analyzed the utility of a graph convolutional neural network (GCNN)-based approach in combination with multitask learning to identify BSEP inhibitors. Our analyses showed that the developed GCNN model performed better than the variable-nearest neighbor and Bayesian machine learning approaches, with a cross-validation receiver operating characteristic area under the curve of 0.86. In addition, we compared GCNN-based single-task and multitask models and evaluated their utility in addressing data limitation challenges commonly observed in bioactivity modeling. We found that multitask models performed better than single-task models and can be utilized to identify active molecules for targets with limited data availability. Overall, our developed multitask GCNN-based BSEP model provides a useful tool for prioritizing hits during early drug discovery and in risk assessment of chemicals.

4.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108594

RESUMEN

Acute kidney injury, which is associated with high levels of morbidity and mortality, affects a significant number of individuals, and can be triggered by multiple factors, such as medications, exposure to toxic chemicals or other substances, disease, and trauma. Because the kidney is a critical organ, understanding and identifying early cellular or gene-level changes can provide a foundation for designing medical interventions. In our earlier work, we identified gene modules anchored to histopathology phenotypes associated with toxicant-induced liver and kidney injuries. Here, using in vivo and in vitro experiments, we assessed and validated these kidney injury-associated modules by analyzing gene expression data from the kidneys of male Hartley guinea pigs exposed to mercuric chloride. Using plasma creatinine levels and cell-viability assays as measures of the extent of renal dysfunction under in vivo and in vitro conditions, we performed an initial range-finding study to identify the appropriate doses and exposure times associated with mild and severe kidney injuries. We then monitored changes in kidney gene expression at the selected doses and time points post-toxicant exposure to characterize the mechanisms of kidney injury. Our injury module-based analysis revealed a dose-dependent activation of several phenotypic cellular processes associated with dilatation, necrosis, and fibrogenesis that were common across the experimental platforms and indicative of processes that initiate kidney damage. Furthermore, a comparison of activated injury modules between guinea pigs and rats indicated a strong correlation between the modules, highlighting their potential for cross-species translational studies.


Asunto(s)
Lesión Renal Aguda , Cloruro de Mercurio , Ratas , Masculino , Cobayas , Animales , Cloruro de Mercurio/toxicidad , Riñón/metabolismo , Pruebas de Función Renal , Lesión Renal Aguda/metabolismo , Hígado/metabolismo
5.
Toxicol Appl Pharmacol ; 430: 115713, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34492290

RESUMEN

To study the complex processes involved in liver injuries, researchers rely on animal investigations, using chemically or surgically induced liver injuries, to extrapolate findings and infer human health risks. However, this presents obvious challenges in performing a detailed comparison and validation between the highly controlled animal models and development of liver injuries in humans. Furthermore, it is not clear whether there are species-dependent and -independent molecular initiating events or processes that cause liver injury before they eventually lead to end-stage liver disease. Here, we present a side-by-side study of rats and guinea pigs using thioacetamide to examine the similarities between early molecular initiating events during an acute-phase liver injury. We exposed Sprague Dawley rats and Hartley guinea pigs to a single dose of 25 or 100 mg/kg thioacetamide and collected blood plasma for metabolomic analysis and liver tissue for RNA-sequencing. The subsequent toxicogenomic analysis identified consistent liver injury trends in both genomic and metabolomic data within 24 and 33 h after thioacetamide exposure in rats and guinea pigs, respectively. In particular, we found species similarities in the key injury phenotypes of inflammation and fibrogenesis in our gene module analysis for liver injury phenotypes. We identified expression of several common genes (e.g., SPP1, TNSF18, SERPINE1, CLDN4, TIMP1, CD44, and LGALS3), activation of injury-specific KEGG pathways, and alteration of plasma metabolites involved in amino acid and bile acid metabolism as some of the key molecular processes that changed early upon thioacetamide exposure and could play a major role in the initiation of acute liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Perfilación de la Expresión Génica , Hígado/metabolismo , Metaboloma , Metabolómica , Tioacetamida , Transcriptoma , Animales , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Redes Reguladoras de Genes , Cobayas , Hígado/patología , Masculino , Ratas Sprague-Dawley , Especificidad de la Especie , Factores de Tiempo
6.
Toxicology ; 442: 152530, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32599119

RESUMEN

Kidney injury caused by disease, trauma, environmental exposures, or drugs may result in decreased renal function, chronic kidney disease, or acute kidney failure. Diagnosis of kidney injury using serum creatinine levels, a common clinical test, only identifies renal dysfunction after the kidneys have undergone severe damage. Other indicators sensitive to kidney injury, such as the level of urine kidney injury molecule-1 (KIM-1), lack the ability to differentiate between injury phenotypes. To address early detection as well as detailed categorization of kidney-injury phenotypes in preclinical animal or cellular studies, we previously identified eight sets (modules) of co-expressed genes uniquely associated with kidney histopathology. Here, we used mercuric chloride (HgCl2)-a model nephrotoxicant-to chemically induce kidney injuries as monitored by KIM-1 levels in Sprague Dawley rats at two doses (0.25 or 0.50 mg/kg) and two exposure lengths (10 or 34 h). We collected whole transcriptome RNA-seq data derived from five animals at each dose and time point to perform a toxicogenomics analysis. Consistent with documented injury phenotypes for HgCl2 toxicity, our kidney-injury-module approach identified the onset of necrosis and dilation as early as 10 h after a dose of 0.50 mg/kg that produced only mild injury as judged by urinary KIM-1 excretion. The results of these animal studies highlight the potential of the kidney-injury-module approach to provide a sensitive and histopathology-specific readout of renal toxicity.


Asunto(s)
Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Cloruro de Mercurio/toxicidad , Toxicogenética/métodos , Animales , Aspartato Aminotransferasas/sangre , Secuencia de Bases , Biomarcadores/orina , Peso Corporal/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/orina , Expresión Génica/efectos de los fármacos , Masculino , Necrosis , Pliegue de Proteína/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
Front Chem ; 7: 701, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31709231

RESUMEN

High throughput screening (HTS) is an important component of lead discovery, with virtual screening playing an increasingly important role. Both methods typically suffer from lack of sensitivity and specificity against their true biological targets. With ever-increasing screening libraries and virtual compound collections, it is now feasible to conduct follow-up experimental testing on only a small fraction of hits. In this context, advances in virtual screening that achieve enrichment of true actives among top-ranked compounds ("early recognition") and, hence, reduce the number of hits to test, are highly desirable. The standard ligand-based virtual screening method for large compound libraries uses a molecular similarity search method that ranks the likelihood of a compound to be active against a drug target by its highest Tanimoto similarity to known active compounds. This approach assumes that the distributions of Tanimoto similarity values to all active compounds are identical (i.e., same mean and standard deviation)-an assumption shown to be invalid (Baldi and Nasr, 2010). Here, we introduce two methods that improve early recognition of actives by exploiting similarity information of all molecules. The first method ranks a compound by its highest z-score instead of its highest Tanimoto similarity, and the second by an aggregated score calculated from its Tanimoto similarity values to all known actives and inactives (or a large number of structurally diverse molecules when information on inactives is unavailable). Our evaluations, which use datasets of over 20 HTS campaigns downloaded from PubChem, indicate that compared to the conventional approach, both methods achieve a ~10% higher Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC) score-a metric of early recognition. Given the increasing use of virtual screening in early lead discovery, these methods provide straightforward means to enhance early recognition.

8.
Front Genet ; 10: 1007, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681434

RESUMEN

Exposure to chemicals contributes to the development and progression of fatty liver, or steatosis, a process characterized by abnormal accumulation of lipids within liver cells. However, lack of knowledge on how chemicals cause steatosis has prevented any large-scale assessment of the 80,000+ chemicals in current use. To address this gap, we mined a large, publicly available toxicogenomic dataset associated with 18 known steatogenic chemicals to assess responses across assays (in vitro and in vivo) and species (i.e., rats and humans). We identified genes that were differentially expressed (DEGs) in rat in vivo, rat in vitro, and human in vitro studies in which rats or in vitro primary cell lines were exposed to the chemicals at different doses and durations. Using these DEGs, we performed pathway enrichment analysis, analyzed the molecular initiating events (MIEs) of the steatosis adverse outcome pathway (AOP), and predicted metabolite changes using metabolic network analysis. Genes indicative of oxidative stress were among the DEGs most frequently observed in the rat in vivo studies. Nox4, a pro-fibrotic gene, was down-regulated across these chemical exposure conditions. We identified eight genes (Cyp1a1, Egr1, Ccnb1, Gdf15, Cdk1, Pdk4, Ccna2, and Ns5atp9) and one pathway (retinol metabolism), associated with steatogenic chemicals and whose response was conserved across the three in vitro and in vivo systems. Similarly, we found the predicted metabolite changes, such as increases of saturated and unsaturated fatty acids, conserved across the three systems. Analysis of the target genes associated with the MIEs of the current steatosis AOP did not provide a clear association between these 18 chemicals and the MIEs, underlining the multi-factorial nature of this disease. Notably, our overall analysis implicated mitochondrial toxicity as an important and overlooked MIE for chemical-induced steatosis. The integrated toxicogenomics approach to identify genes, pathways, and metabolites based on known steatogenic chemicals, provide an important mean to assess development of AOPs and gauging the relevance of new testing strategies.

9.
Toxicol Pathol ; 46(2): 202-223, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29378501

RESUMEN

The past decade has seen an increase in the development and clinical use of biomarkers associated with histological features of liver disease. Here, we conduct a comparative histological and global proteomics analysis to identify coregulated modules of proteins in the progression of hepatic steatosis or fibrosis. We orally administered the reference chemicals bromobenzene (BB) or 4,4'-methylenedianiline (4,4'-MDA) to male Sprague-Dawley rats for either 1 single administration or 5 consecutive daily doses. Livers were preserved for histopathology and global proteomics assessment. Analysis of liver sections confirmed a dose- and time-dependent increase in frequency and severity of histopathological features indicative of lipid accumulation after BB or fibrosis after 4,4'-MDA. BB administration resulted in a dose-dependent increase in the frequency and severity of inflammation and vacuolation. 4,4'-MDA administration resulted in a dose-dependent increase in the frequency and severity of periportal collagen accumulation and inflammation. Pathway analysis identified a time-dependent enrichment of biological processes associated with steatogenic or fibrogenic initiating events, cellular functions, and toxicological states. Differentially expressed protein modules were consistent with the observed histology, placing physiologically linked protein networks into context of the disease process. This study demonstrates the potential for protein modules to provide mechanistic links between initiating events and histopathological outcomes.


Asunto(s)
Biomarcadores/análisis , Hígado Graso/metabolismo , Cirrosis Hepática/metabolismo , Proteómica/métodos , Administración Oral , Compuestos de Anilina/toxicidad , Animales , Bromobencenos/toxicidad , Hígado Graso/inducido químicamente , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/inducido químicamente , Masculino , Ratas , Ratas Sprague-Dawley
10.
J Chem Inf Model ; 57(9): 2194-2202, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28796500

RESUMEN

The quantitative structure-activity relationship (QSAR) approach has been used to model a wide range of chemical-induced biological responses. However, it had not been utilized to model chemical-induced genomewide gene expression changes until very recently, owing to the complexity of training and evaluating a very large number of models. To address this issue, we examined the performance of a variable nearest neighbor (v-NN) method that uses information on near neighbors conforming to the principle that similar structures have similar activities. Using a data set of gene expression signatures of 13 150 compounds derived from cell-based measurements in the NIH Library of Integrated Network-based Cellular Signatures program, we were able to make predictions for 62% of the compounds in a 10-fold cross validation test, with a correlation coefficient of 0.61 between the predicted and experimentally derived signatures-a reproducibility rivaling that of high-throughput gene expression measurements. To evaluate the utility of the predicted gene expression signatures, we compared the predicted and experimentally derived signatures in their ability to identify drugs known to cause specific liver, kidney, and heart injuries. Overall, the predicted and experimentally derived signatures had similar receiver operating characteristics, whose areas under the curve ranged from 0.71 to 0.77 and 0.70 to 0.73, respectively, across the three organ injury models. However, detailed analyses of enrichment curves indicate that signatures predicted from multiple near neighbors outperformed those derived from experiments, suggesting that averaging information from near neighbors may help improve the signal from gene expression measurements. Our results demonstrate that the v-NN method can serve as a practical approach for modeling large-scale, genomewide, chemical-induced, gene expression changes.


Asunto(s)
Biología Computacional/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Aprendizaje Automático , Relación Estructura-Actividad Cuantitativa
11.
BMC Pharmacol Toxicol ; 18(1): 44, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28595649

RESUMEN

BACKGROUND: The expanded use of multiple drugs has increased the occurrence of adverse drug reactions (ADRs) induced by drug-drug interactions (DDIs). However, such reactions are typically not observed in clinical drug-development studies because most of them focus on single-drug therapies. ADR reporting systems collect information on adverse health effects caused by both single drugs and DDIs. A major challenge is to unambiguously identify the effects caused by DDIs and to attribute them to specific drug interactions. A computational method that provides prospective predictions of potential DDI-induced ADRs will help to identify and mitigate these adverse health effects. METHOD: We hypothesize that drug-protein interactions can be used as independent variables in predicting ADRs. We constructed drug pair-protein interaction profiles for ~800 drugs using drug-protein interaction information in the public domain. We then constructed statistical models to score drug pairs for their potential to induce ADRs based on drug pair-protein interaction profiles. RESULTS: We used extensive clinical database information to construct categorical prediction models for drug pairs that are likely to induce ADRs via synergistic DDIs and showed that model performance deteriorated only slightly, with a moderate amount of false positives and false negatives in the training samples, as evaluated by our cross-validation analysis. The cross validation calculations showed an average prediction accuracy of 89% across 1,096 ADR models that captured the deleterious effects of synergistic DDIs. Because the models rely on drug-protein interactions, we made predictions for pairwise combinations of 764 drugs that are currently on the market and for which drug-protein interaction information is available. These predictions are publicly accessible at http://avoid-db.bhsai.org . We used the predictive models to analyze broader aspects of DDI-induced ADRs, showing that ~10% of all combinations have the potential to induce ADRs via DDIs. This allowed us to identify potential DDI-induced ADRs not yet clinically reported. The ability of the models to quantify adverse effects between drug classes also suggests that we may be able to select drug combinations that minimize the risk of ADRs. CONCLUSION: Almost all information on DDI-induced ADRs is generated after drug approval. This situation poses significant health risks for vulnerable patient populations with comorbidities. To help mitigate the risks, we developed a robust probabilistic approach to prospectively predict DDI-induced ADRs. Based on this approach, we developed prediction models for 1,096 ADRs and used them to predict the propensity of all pairwise combinations of nearly 800 drugs to be associated with these ADRs via DDIs. We made the predictions publicly available via internet access.


Asunto(s)
Interacciones Farmacológicas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Modelos Estadísticos , Sistemas de Registro de Reacción Adversa a Medicamentos , Bases de Datos Factuales , Humanos , Unión Proteica
12.
BMC Genomics ; 17(1): 790, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27724849

RESUMEN

BACKGROUND: Acute kidney injury (AKI) caused by drug and toxicant ingestion is a serious clinical condition associated with high mortality rates. We currently lack detailed knowledge of the underlying molecular mechanisms and biological networks associated with AKI. In this study, we carried out gene co-expression analyses using DrugMatrix-a large toxicogenomics database with gene expression data from rats exposed to diverse chemicals-and identified gene modules associated with kidney injury to probe the molecular-level details of this disease. RESULTS: We generated a comprehensive set of gene co-expression modules by using the Iterative Signature Algorithm and found distinct clusters of modules that shared genes and were associated with similar chemical exposure conditions. We identified two module clusters that showed specificity for kidney injury in that they 1) were activated by chemical exposures causing kidney injury, 2) were not activated by other chemical exposures, and 3) contained known AKI-relevant genes such as Havcr1, Clu, and Tff3. We used the genes in these AKI-relevant module clusters to develop a signature of 30 genes that could assess the potential of a chemical to cause kidney injury well before injury actually occurs. We integrated AKI-relevant module cluster genes with protein-protein interaction networks and identified the involvement of immunoproteasomes in AKI. To identify biological networks and processes linked to Havcr1, we determined genes within the modules that frequently co-express with Havcr1, including Cd44, Plk2, Mdm2, Hnmt, Macrod1, and Gtpbp4. We verified this procedure by showing that randomized data did not identify Havcr1 co-expression genes and that excluding up to 10 % of the data caused only minimal degradation of the gene set. Finally, by using an external dataset from a rat kidney ischemic study, we showed that the frequently co-expressed genes of Havcr1 behaved similarly in a model of non-chemically induced kidney injury. CONCLUSIONS: Our study demonstrated that co-expression modules and co-expressed genes contain rich information for generating novel biomarker hypotheses and constructing mechanism-based molecular networks associated with kidney injury.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Minería de Datos , Perfilación de la Expresión Génica , Toxicogenética , Transcriptoma , Lesión Renal Aguda/metabolismo , Animales , Biomarcadores , Análisis por Conglomerados , Biología Computacional/métodos , Bases de Datos Genéticas , Fenotipo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Curva ROC , Ratas , Transducción de Señal , Toxicogenética/métodos
13.
Chem Res Toxicol ; 29(10): 1729-1740, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27603675

RESUMEN

The pregnane X receptor (PXR) is a ligand-activated transcription factor that acts as a master regulator of metabolizing enzymes and transporters. To avoid adverse drug-drug interactions and diseases such as steatosis and cancers associated with PXR activation, identifying drugs and chemicals that activate PXR is of crucial importance. In this work, we developed ligand-based predictive computational models for both rat and human PXR activation, which allowed us to identify potentially harmful chemicals and evaluate species-specific effects of a given compound. We utilized a large publicly available data set of nearly 2000 compounds screened in cell-based reporter gene assays to develop Bayesian quantitative structure-activity relationship models using physicochemical properties and structural descriptors. Our analysis showed that PXR activators tend to be hydrophobic and significantly different from nonactivators in terms of their physicochemical properties such as molecular weight, logP, number of rings, and solubility. Our Bayesian models, evaluated by using 5-fold cross-validation, displayed a sensitivity of 75% (76%), specificity of 76% (75%), and accuracy of 89% (89%) for human (rat) PXR activation. We identified structural features shared by rat and human PXR activators as well as those unique to each species. We compared rat in vitro PXR activation data to in vivo data by using DrugMatrix, a large toxicogenomics database with gene expression data obtained from rats after exposure to diverse chemicals. Although in vivo gene expression data pointed to cross-talk between nuclear receptor activators that is captured only by in vivo assays, overall we found broad agreement between in vitro and in vivo PXR activation. Thus, the models developed here serve primarily as efficient initial high-throughput in silico screens of in vitro activity.


Asunto(s)
Teorema de Bayes , Receptores de Esteroides/metabolismo , Animales , Humanos , Ligandos , Modelos Moleculares , Receptor X de Pregnano , Ratas , Ratas Sprague-Dawley
14.
J Appl Toxicol ; 36(9): 1137-49, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26725466

RESUMEN

Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co-expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) - a toxicogenomics database containing organ-specific gene expression data matched to dose- and time-dependent chemical exposures and adverse histopathology assessments in Sprague-Dawley rats. We proposed a protocol for selecting gene modules associated with chemical-induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose-dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical-time-dose combination, correlated with the severity of histopathological damage in a dose-dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.


Asunto(s)
Redes Reguladoras de Genes , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Xenobióticos/toxicidad , Animales , Biomarcadores/metabolismo , Bases de Datos Factuales , Relación Dosis-Respuesta a Droga , Determinación de Punto Final , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica , Riñón/metabolismo , Hígado/metabolismo , Masculino , Modelos Biológicos , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley , Toxicogenética
15.
Toxicol Sci ; 149(1): 67-88, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26396155

RESUMEN

Toxic industrial chemicals induce liver injury, which is difficult to diagnose without invasive procedures. Identifying indicators of end organ injury can complement exposure-based assays and improve predictive power. A multiplexed approach was used to experimentally evaluate a panel of 67 genes predicted to be associated with the fibrosis pathology by computationally mining DrugMatrix, a publicly available repository of gene microarray data. Five-day oral gavage studies in male Sprague Dawley rats dosed with varying concentrations of 3 fibrogenic compounds (allyl alcohol, carbon tetrachloride, and 4,4'-methylenedianiline) and 2 nonfibrogenic compounds (bromobenzene and dexamethasone) were conducted. Fibrosis was definitively diagnosed by histopathology. The 67-plex gene panel accurately diagnosed fibrosis in both microarray and multiplexed-gene expression assays. Necrosis and inflammatory infiltration were comorbid with fibrosis. ANOVA with contrasts identified that 51 of the 67 predicted genes were significantly associated with the fibrosis phenotype, with 24 of these specific to fibrosis alone. The protein product of the gene most strongly correlated with the fibrosis phenotype PCOLCE (Procollagen C-Endopeptidase Enhancer) was dose-dependently elevated in plasma from animals administered fibrogenic chemicals (P < .05). Semiquantitative global mass spectrometry analysis of the plasma identified an additional 5 protein products of the gene panel which increased after fibrogenic toxicant administration: fibronectin, ceruloplasmin, vitronectin, insulin-like growth factor binding protein, and α2-macroglobulin. These results support the data mining approach for identifying gene and/or protein panels for assessing liver injury and may suggest bridging biomarkers for molecular mediators linked to histopathology.


Asunto(s)
Perfilación de la Expresión Génica , Cirrosis Hepática/inducido químicamente , Hígado/patología , Animales , Quimiotaxis , Biología Computacional , Minería de Datos , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/sangre , Inflamación/etiología , Péptidos y Proteínas de Señalización Intercelular , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Ratas , Ratas Sprague-Dawley
16.
PLoS One ; 9(11): e112193, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25380136

RESUMEN

Toxic liver injury causes necrosis and fibrosis, which may lead to cirrhosis and liver failure. Despite recent progress in understanding the mechanism of liver fibrosis, our knowledge of the molecular-level details of this disease is still incomplete. The elucidation of networks and pathways associated with liver fibrosis can provide insight into the underlying molecular mechanisms of the disease, as well as identify potential diagnostic or prognostic biomarkers. Towards this end, we analyzed rat gene expression data from a range of chemical exposures that produced observable periportal liver fibrosis as documented in DrugMatrix, a publicly available toxicogenomics database. We identified genes relevant to liver fibrosis using standard differential expression and co-expression analyses, and then used these genes in pathway enrichment and protein-protein interaction (PPI) network analyses. We identified a PPI network module associated with liver fibrosis that includes known liver fibrosis-relevant genes, such as tissue inhibitor of metalloproteinase-1, galectin-3, connective tissue growth factor, and lipocalin-2. We also identified several new genes, such as perilipin-3, legumain, and myocilin, which were associated with liver fibrosis. We further analyzed the expression pattern of the genes in the PPI network module across a wide range of 640 chemical exposure conditions in DrugMatrix and identified early indications of liver fibrosis for carbon tetrachloride and lipopolysaccharide exposures. Although it is well known that carbon tetrachloride and lipopolysaccharide can cause liver fibrosis, our network analysis was able to link these compounds to potential fibrotic damage before histopathological changes associated with liver fibrosis appeared. These results demonstrated that our approach is capable of identifying early-stage indicators of liver fibrosis and underscore its potential to aid in predictive toxicity, biomarker identification, and to generally identify disease-relevant pathways.


Asunto(s)
Regulación de la Expresión Génica , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Mapas de Interacción de Proteínas , Animales , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Redes Reguladoras de Genes , Humanos , Hígado/patología , Cirrosis Hepática/patología , Ratas Sprague-Dawley , Transducción de Señal , Biología de Sistemas , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Transcriptoma
17.
PLoS One ; 9(9): e107230, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25226513

RESUMEN

Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Perfilación de la Expresión Génica , Expresión Génica , Redes Reguladoras de Genes , Algoritmos , Animales , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Análisis por Conglomerados , Biología Computacional/métodos , Bases de Datos Genéticas , Humanos , Ratas , Reproducibilidad de los Resultados , Transducción de Señal , Transcriptoma
18.
Bioorg Med Chem ; 22(7): 2149-56, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24631364

RESUMEN

Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have been performed to explore the dynamic behaviors of cytochrome P450 2A6 (CYP2A6) binding with nicotine analogs (that are typical inhibitors) and to calculate their binding free energies in combination with Poisson-Boltzmann surface area (PBSA) calculations. The combined MD simulations and QM/MM-PBSA calculations reveal that the most important structural parameters affecting the CYP2A6-inhibitor binding affinity are two crucial internuclear distances, that is, the distance between the heme iron atom of CYP2A6 and the coordinating atom of the inhibitor, and the hydrogen-bonding distance between the N297 side chain of CYP2A6 and the pyridine nitrogen of the inhibitor. The combined MD simulations and QM/MM-PBSA calculations have led to dynamic CYP2A6-inhibitor binding structures that are consistent with the observed dynamic behaviors and structural features of CYP2A6-inhibitor binding, and led to the binding free energies that are in good agreement with the experimentally-derived binding free energies. The agreement between the calculated binding free energies and the experimentally-derived binding free energies suggests that the combined MD and QM/MM-PBSA approach may be used as a valuable tool to accurately predict the CYP2A6-inhibitor binding affinities in future computational design of new, potent and selective CYP2A6 inhibitors.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Simulación de Dinámica Molecular , Nicotina/farmacología , Teoría Cuántica , Hidrocarburo de Aril Hidroxilasas/metabolismo , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Nicotina/análogos & derivados , Nicotina/química , Relación Estructura-Actividad
19.
Bioorg Med Chem ; 22(3): 1148-55, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24405813

RESUMEN

Natural products represent the fourth generation of multidrug resistance (MDR) reversal agents that resensitize MDR cancer cells overexpressing P-glycoprotein (Pgp) to cytotoxic agents. We have developed an effective synthetic route to prepare various Strychnos alkaloids and their derivatives. Molecular modeling of these alkaloids docked to a homology model of Pgp was employed to optimize ligand-protein interactions and design analogues with increased affinity to Pgp. Moreover, the compounds were evaluated for their (1) binding affinity to Pgp by fluorescence quenching, and (2) MDR reversal activity using a panel of in vitro and cell-based assays and compared to verapamil, a known inhibitor of Pgp activity. Compound 7 revealed the highest affinity to Pgp of all Strychnos congeners (Kd=4.4µM), the strongest inhibition of Pgp ATPase activity, and the strongest MDR reversal effect in two Pgp-expressing cell lines. Altogether, our findings suggest the clinical potential of these synthesized compounds as viable Pgp modulators justifies further investigation.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Strychnos/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Alcaloides/síntesis química , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral/efectos de los fármacos , Técnicas de Química Sintética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Alcaloides Indólicos/síntesis química , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Indoles/síntesis química , Indoles/química , Indoles/farmacología , Simulación del Acoplamiento Molecular , Conformación Proteica , Tubocurarina/análogos & derivados , Tubocurarina/síntesis química , Tubocurarina/química , Tubocurarina/farmacología , Verapamilo/farmacología
20.
J Med Chem ; 56(13): 5275-87, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23815100

RESUMEN

In this study, we describe novel inhibitors against Francisella tularensis SchuS4 FabI identified from structure-based in silico screening with integrated molecular dynamics simulations to account for induced fit of a flexible loop crucial for inhibitor binding. Two 3-substituted indoles, 54 and 57, preferentially bound the NAD(+) form of the enzyme and inhibited growth of F. tularensis SchuS4 at concentrations near that of their measured Ki. While 57 was species-specific, 54 showed a broader spectrum of growth inhibition against F. tularensis , Bacillus anthracis , and Staphylococcus aureus . Binding interaction analysis in conjunction with site-directed mutagenesis revealed key residues and elements that contribute to inhibitor binding and species specificity. Mutation of Arg-96, a poorly conserved residue opposite the loop, was unexpectedly found to enhance inhibitor binding in the R96G and R96M variants. This residue may affect the stability and closure of the flexible loop to enhance inhibitor (or substrate) binding.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Francisella tularensis/efectos de los fármacos , Indoles/farmacología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Biología Computacional/métodos , Enoil-ACP Reductasa (NADH)/química , Enoil-ACP Reductasa (NADH)/genética , Inhibidores Enzimáticos/química , Francisella tularensis/genética , Francisella tularensis/crecimiento & desarrollo , Humanos , Indoles/química , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...