Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(4): e25285, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38370249

RESUMEN

In this study, rifaximin with copper (Cu) and copper oxide (CuO) nanoparticles (NPs) were synthesised. The resultant CuO nanoparticles were used to degrade Rhodamine B (RhB) and Coomassie Brilliant Blue (G250). Rifaximin copper and copper oxide nanoparticles were characterised using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and gas chromatography-electrochemical mass spectrometry (GC-EI-MS). An FT-IR study confirmed the formation of Cu in the 562 cm-1 peak range. Rifaximin Cu and CuO Nanoparticles displayed UV absorption peaks at 253 nm and 230 nm, respectively. Coomassie Brilliant Blue G250 was completely decolourised in Cu nanoparticles at 100 %, and Rhodamine B was also decolourised in Rifaximin CuO nanoparticles at 73 %, although Coomassie Brilliant Blue G250 Rifaximin Cu nanoparticles absorbed a high percentage of dye decolorization. The aerobic oxidation of isopropanol conversion was confirmed by GC-MS analysis. Retention time of 27.35 and 30.32 was confirmed using Cu and CuO nanoparticles as the final products of 2-propanone. It is used in the textile and pharmaceutical industries for aerobic alcohol oxidation. Rifaximin CuO nanoparticles highly active in aerobic oxidation. The novelty of this study is that, for the first time, rifaximin was used for the synthesis of copper and copper oxide nanoparticles, and it successfully achieved decolorization and aerobic oxidation.

2.
J Fungi (Basel) ; 9(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37233278

RESUMEN

Microbial degradation is an effective, eco-friendly and sustainable approach for management of the rice residue. After harvesting a rice crop, removal of stubble from the ground is a challenging task, that forces the farmers to burn the residue in-situ. Therefore, accelerated degradation using an eco-friendly alternative is a necessity. White rot fungi are the most explored group of microbes for accelerated degradation of lignin but they are very slow in growth. The present investigation focuses on degradation of rice stubble using a fungal consortium constructed with highly sporulating ascomycetes fungi, namely, Aspergillus terreus, Aspergillus fumigatus and Alternaria spp. All three species were successful at colonizing the rice stubble. Periodical HPLC analysis of rice stubble alkali extracts revealed that incubation with ligninolytic consortium released various lignin degradation products such as vanillin, vanillic acid, coniferyl alcohol, syringic acid and ferulic acid. The efficiency of the consortium was further studied at different dosages on paddy straw. Maximum lignin degradation was observed when the consortium was applied at 15% volume by weight of rice stubble. Maximum activity of different lignolytic enzymes such as lignin peroxidase, laccase and total phenols was also found with the same treatment. FTIR analysis also supported the observed results. Hence, the presently developed consortium for degrading rice stubble was found to be effective in both laboratory and field conditions. The developed consortium or its oxidative enzymes can be used alone or combined with other commercial cellulolytic consortia to manage the accumulating rice stubble effectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...