Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202415279, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363683

RESUMEN

In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.

2.
Methods Enzymol ; 704: 173-198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300647

RESUMEN

α-Ketoglutarate-dependent non-heme iron (α-KG NHI) oxygenases compose one of the largest superfamilies of tailoring enzymes that play key roles in structural and functional diversifications. During the biosynthesis of meroterpenoids, α-KG NHI oxygenases catalyze diverse types of chemical reactions, including hydroxylation, desaturation, epoxidation, endoperoxidation, ring-cleavage, and skeletal rearrangements. Due to their catalytic versatility, keen attention has been focused on functional analyses of α-KG NHI oxygenases. This chapter provides detailed methodologies for the functional analysis of the fungal α-KG NHI oxygenase SptF, which plays an important role in the structural diversification of andiconin-derived meroterpenoids. The procedures included describe how to prepare the meroterpenoid substrate using a heterologous fungal host, measure the in vitro enzymatic activity of SptF, and how to perform structural and mutagenesis studies on SptF. These protocols are also applicable to functional analyses of other α-KG NHI oxygenases.


Asunto(s)
Ácidos Cetoglutáricos , Terpenos , Terpenos/metabolismo , Terpenos/química , Ácidos Cetoglutáricos/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Oxigenasas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Hierro no Heme/metabolismo , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/genética , Hongos/metabolismo , Hongos/genética , Hongos/enzimología , Pruebas de Enzimas/métodos , Especificidad por Sustrato
3.
Nat Prod Rep ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39192828

RESUMEN

Covering: 1977 to presentArsenic is widely distributed throughout terrestrial and aquatic environments, mainly in highly toxic inorganic forms. To adapt to environmental inorganic arsenic, bacteria have evolved ubiquitous arsenic metabolic strategies by combining arsenite methylation and related redox reactions, which have been extensively studied. Recent reports have shown that some bacteria have specific metabolic pathways associated with structurally and biologically unique organoarsenic natural products. In this highlight, by exemplifying the cases of oxo-arsenosugars, arsinothricin, and bisenarsan, we summarize recent advances in the identification and biosynthesis of bacterial organoarsenic natural products. We also discuss the potential discoveries of novel arsenic-containing natural products of bacterial origins.

4.
Angew Chem Int Ed Engl ; 63(36): e202409973, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38837490

RESUMEN

Prenylation of peptides is widely observed in the secondary metabolites of diverse organisms, granting peptides unique chemical properties distinct from proteinogenic amino acids. Discovery of prenylated peptide agents has largely relied on isolation or genome mining of naturally occurring molecules. To devise a platform technology for de novo discovery of artificial prenylated peptides targeting a protein of choice, here we have integrated the thioether-macrocyclic peptide (teMP) library construction/selection technology, so-called RaPID (Random nonstandard Peptides Integrated Discovery) system, with a Trp-C3-prenyltransferase KgpF involved in the biosynthesis of a prenylated natural product. This unique enzyme exhibited remarkably broad substrate tolerance, capable of modifying various Trp-containing teMPs to install a prenylated residue with tricyclic constrained structure. We constructed a vast library of prenylated teMPs and subjected it to in vitro selection against a phosphoglycerate mutase. This selection platform has led to the identification of a pseudo-natural prenylated teMP inhibiting the target enzyme with an IC50 of 30 nM. Importantly, the prenylation was essential for the inhibitory activity, enhanced serum stability, and cellular uptake of the peptide, highlighting the benefits of peptide prenylation. This work showcases the de novo discovery platform for pseudo-natural prenylated peptides, which is readily applicable to other drug targets.


Asunto(s)
Prenilación , Ligandos , Humanos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/metabolismo , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Dimetilaliltranstransferasa/metabolismo , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/antagonistas & inhibidores , Prenilación de Proteína
5.
Nat Commun ; 15(1): 4588, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816433

RESUMEN

Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.


Asunto(s)
Glicosiltransferasas , Lycium , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Glicosilación , Lycium/enzimología , Lycium/metabolismo , Lycium/química , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Glicósidos/metabolismo , Glicósidos/química , Cristalografía por Rayos X , Piperidinas/metabolismo , Piperidinas/química , Especificidad por Sustrato
6.
RSC Chem Biol ; 5(4): 293-311, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38576726

RESUMEN

l-Cysteine is a highly reactive amino acid that is modified into a variety of chemical structures, including cysteine sulfinic acid in human metabolic pathways, and sulfur-containing scaffolds of amino acids, alkaloids, and peptides in natural product biosynthesis. Among the modification enzymes responsible for these cysteine-derived compounds, metalloenzymes constitute an important family of enzymes that catalyze a wide variety of reactions. Therefore, understanding their reaction mechanisms is important for the biosynthetic production of cysteine-derived natural products. This review mainly summarizes recent mechanistic investigations of metalloenzymes, with a particular focus on recently discovered mononuclear non-heme iron (NHI) enzymes, dinuclear NHI enzymes, and radical-SAM enzymes involved in unusual cysteine modifications in natural product biosynthesis.

7.
J Am Chem Soc ; 146(18): 12723-12733, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38654452

RESUMEN

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.


Asunto(s)
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aspergillus oryzae/enzimología , Aspergillus oryzae/metabolismo , Familia de Multigenes , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo
8.
Angew Chem Int Ed Engl ; 63(26): e202403963, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38635317

RESUMEN

(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Indoles , Penicillium , Biocatálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Indoles/química , Indoles/metabolismo , Estructura Molecular , Penicillium/enzimología , Estereoisomerismo
9.
Org Biomol Chem ; 22(18): 3559-3583, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38639195

RESUMEN

Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.


Asunto(s)
Esteroides , Esteroides/química , Esteroides/metabolismo , Humanos , Biocatálisis , Enzimas/metabolismo , Enzimas/química , Hidroxilación , Estructura Molecular
10.
Chembiochem ; 25(6): e202300840, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38165257

RESUMEN

Lincosamides are naturally occurring antibiotics isolated from Streptomyces sp. Currently, lincomycin A and its semisynthetic analogue clindamycin are used as clinical drugs. Due to their unique structures and remarkable biological activities, derivatizations of lincosamides via semi-synthesis and biosynthetic studies have been reported. This review summarizes the structures and biological activities of lincosamides, and the recent studies of lincosamide biosynthetic enzymes.


Asunto(s)
Antibacterianos , Lincomicina , Antibacterianos/farmacología , Antibacterianos/química , Lincosamidas/farmacología , Lincosamidas/química , Lincomicina/química , Macrólidos
11.
Org Lett ; 26(3): 724-727, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38227980

RESUMEN

l-Isovaline biosynthesis by TqaLFM-ti from Tolypocladium inflatum was demonstrated in vitro. The biochemical analysis of the α-ketoglutarate-dependent oxygenase TqaL-ti revealed that it produces (2S,3S)-3-ethyl-3-methylaziridine-2-carboxylic acid from l-isoleucine, thus exhibiting a stereoselectivity different from those of the reported homologues. Remarkably, a single mutation on I295 in TqaL-ti completely exchanged its stereoselectivity to produce the C-3 stereoisomer. TqaFM-ti generates d-isovaline from (2S,3R)-aziridine-2-carboxylic acid, suggesting that the stereochemistry of the TqaL product defines that of isovaline.


Asunto(s)
Aziridinas , Ácidos Cetoglutáricos , Oxigenasas , Valina/análisis , Estereoisomerismo
12.
Nat Plants ; 9(12): 1946-1947, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38066291
13.
ACS Catal ; 13(20): 13369-13382, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38130475

RESUMEN

The pseudoglycosyltransferase (PsGT) enzyme VldE is a homologue of the retaining glycosyltransferase (GT) trehalose 6-phosphate synthase (OtsA) that catalyzes a coupling reaction between two pseudo-sugar units, GDP-valienol and validamine 7-phosphate, to give a product with α,α-N-pseudo-glycosidic linkage. Despite its biological importance and unique catalytic function, the molecular bases for its substrate specificity and reaction mechanism are still obscure. Here, we report a comparative mechanistic study of VldE and OtsA using various engineered chimeric proteins and point mutants of the enzymes, X-ray crystallography, docking studies, and kinetic isotope effects. We found that the distinct substrate specificities between VldE and OtsA are most likely due to topological differences within the hot spot amino acid regions of their N-terminal domains. We also found that the Asp158 and His182 residues, which are in the active site, play a significant role in the PsGT function of VldE. They do not seem to be directly involved in the catalysis but may be important for substrate recognition or contribute to the overall architecture of the active site pocket. Moreover, results of the kinetic isotope effect experiments suggest that VldE catalyzes a C-N bond formation between GDP-valienol and validamine 7-phosphate via an SNi-like mechanism. The study provides new insights into the substrate specificity and catalytic mechanism of a member of the growing family of PsGT enzymes, which may be used as a basis for developing new PsGTs from GTs.

14.
Methods Enzymol ; 693: 171-190, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37977730

RESUMEN

Fungal cytochrome P450s participate in various physiological reactions, including the synthesis of internal cellular components, metabolic detoxification of xenobiotic compounds, and oxidative modification of natural products. Although functional analysis reports of fungal P450s continue to grow, there are still some difficulties as compared to prokaryotic P450s, because most of these fungal enzymes are transmembrane proteins. In this chapter, we will describe the methods for heterologous expression, in vivo analysis, enzyme preparation, and in vitro enzyme assays of the fungal P450 enzyme Trt6 and isomerase Trt14, which play important roles in the divergence of the biosynthetic pathway of terretonins, as a model for the functional analysis of fungal P450 enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción
15.
J Am Chem Soc ; 145(44): 24210-24217, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37874539

RESUMEN

BelL and HrmJ are α-ketoglutarate-dependent nonheme iron enzymes that catalyze the oxidative cyclization of 6-nitronorleucine, resulting in the formation of two diastereomeric 3-(2-nitrocyclopropyl)alanine (Ncpa) products containing trans-cyclopropane rings with (1'R,2'R) and (1'S,2'S) configurations, respectively. Herein, we investigate the catalytic mechanism and stereodivergency of the cyclopropanases. The results suggest that the nitroalkane moiety of the substrate is first deprotonated to produce the nitronate form. Spectroscopic analyses and biochemical assays with substrates and analogues indicate that an iron(IV)-oxo species abstracts proS-H from C4 to initiate intramolecular C-C bond formation. A hydroxylation intermediate is unlikely to be involved in the cyclopropanation reaction. Additionally, a genome mining approach is employed to discover new homologues that perform the cyclopropanation of 6-nitronorleucine to generate cis-configured Ncpa products with (1'R,2'S) or (1'S,2'R) stereochemistries. Sequence and structure comparisons of these cyclopropanases enable us to determine the amino acid residues critical for controlling the stereoselectivity of cyclopropanation.


Asunto(s)
Aminocaproatos , Estereoisomerismo , Oxidación-Reducción
16.
J Am Chem Soc ; 145(40): 21966-21973, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37729620

RESUMEN

Hinokiresinol synthase (HRS) from Asparagus officinalis consists of two subunits, α and ß, and catalyzes an unusual decarboxylative rearrangement reaction of 4-coumaryl 4-coumarate to generate (Z)-hinokiresinol with complete stereoselectivity. Herein, we describe the mechanism of rearrangement catalysis and the role played by the heterodimeric HRS, through structural and computational analyses. Our results suggest that the HRS reaction is unlikely to proceed via the previously hypothesized Claisen rearrangement mechanism. Instead, we propose that the 4-coumaryl 4-coumarate substrate is first cleaved into coumarate and an extended p-quinone methide, which then recombine to generate a new C-C bond. These processes are facilitated by proton transfers mediated by the basic residues (α-Lys164, α-Arg169, ß-Lys168, and ß-Arg173) in the cavity at the heterodimer interface. The active site residues, α-Asp165, ß-Asp169, ß-Trp17, ß-Met136, and ß-Ala171, play crucial roles in controlling the regioselectivity of the coupling between the fragmented intermediates as well as the stereoselectivity of the decarboxylation step, leading to the formation of the (Z)-hinokiresinol product.

17.
Chem Pharm Bull (Tokyo) ; 71(9): 675-677, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37394629

RESUMEN

We describe the photoinduced reductive debromination of phenacyl bromides using pyridoxal 5'-phosphate (PLP). The reaction requires irradiation with cyan or blue light in an anaerobic atmosphere. Mechanistic analysis reveals the formation of the phenacyl radical as an intermediate in the reaction, implying a single electron transfer to phenacyl bromides from a PLP-derived species resulting from excitation by illumination.


Asunto(s)
Bromuros , Fosfato de Piridoxal , Fosfatos
18.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37422437

RESUMEN

Tetrapyrroles represent a unique class of natural products that possess diverse chemical architectures and exhibit a broad range of biological functions. Accordingly, they attract keen attention from the natural product community. Many metal-chelating tetrapyrroles serve as enzyme cofactors essential for life, while certain organisms produce metal-free porphyrin metabolites with biological activities potentially beneficial for the producing organisms and for human use. The unique properties of tetrapyrrole natural products derive from their extensively modified and highly conjugated macrocyclic core structures. Most of these various tetrapyrrole natural products biosynthetically originate from a branching point precursor, uroporphyrinogen III, which contains propionate and acetate side chains on its macrocycle. Over the past few decades, many modification enzymes with unique catalytic activities, and the diverse enzymatic chemistries employed to cleave the propionate side chains from the macrocycles, have been identified. In this review, we highlight the tetrapyrrole biosynthetic enzymes required for the propionate side chain removal processes and discuss their various chemical mechanisms. ONE-SENTENCE SUMMARY: This mini-review describes various enzymes involved in the propionate side chain cleavages during the biosynthesis of tetrapyrrole cofactors and secondary metabolites.

19.
Nat Chem ; 15(8): 1056-1057, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37488376
20.
Angew Chem Int Ed Engl ; 62(29): e202304989, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37222528

RESUMEN

The S-glycosyltransferase LmbT, involved in the biosynthesis of lincomycin A, is the only known enzyme that catalyzes the enzymatic incorporation of rare amino acid L-ergothioneine (EGT) into secondary metabolites. Here, we show the structure and function analyses of LmbT. Our in vitro analysis of LmbT revealed that the enzyme shows promiscuous substrate specificity toward nitrogenous base moieties in the generation of unnatural nucleotide diphosphate (NDP)-D-α-D-lincosamides. Furthermore, the X-ray crystal structures of LmbT in its apo form and in complex with substrates indicated that the large conformational changes of the active site occur upon binding of the substrates, and that EGT is strictly recognized by salt-bridge and cation-π interactions with Arg260 and Trp101, respectively. The structure of LmbT in complex with its substrates, the docking model with the EGT-S-conjugated lincosamide, and the structure-based site-directed mutagenesis analysis revealed the structural details of the LmbT-catalyzed SN 2-like S-glycosylation reaction with EGT.


Asunto(s)
Antibacterianos , Lincomicina , Glicosilación , Antibacterianos/química , Lincosamidas/química , Lincosamidas/metabolismo , Lincomicina/química , Glicosiltransferasas/metabolismo , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...