RESUMEN
Climate change has severely impacted many species, causing rapid declines or extinctions within their essential ecological niches. This deterioration is expected to worsen, particularly in remote high-altitude regions like the Himalayas, which are home to diverse flora and fauna, including many mountainous ungulates. Unfortunately, many of these species lack adaptive strategies to cope with novel climatic conditions. The Red Goral (Naemorhedus baileyi) is a cliff-dwelling species classified as "Vulnerable" by the IUCN due to its small population and restricted range extent. This species has the most restricted range of all goral species, residing in the temperate mountains of northeastern India, northern Myanmar, and China. Given its restricted range and small population, this species is highly threatened by climate change and habitat disruptions, making habitat mapping and modeling crucial for effective conservation. This study employs an ensemble approach (BRT, GLM, MARS, and MaxEnt) in species distribution modeling to assess the distribution, habitat suitability, and connectivity of this species, addressing critical gaps in its understanding. The findings reveal deeply concerning trends, as the model identified only 21,363 km2 (13.01%) of the total IUCN extent as suitable habitat under current conditions. This limited extent is alarming, as it leaves the species with very little refuge to thrive. Furthermore, this situation is compounded by the fact that only around 22.29% of this identified suitable habitat falls within protected areas (PAs), further constraining the species' ability to survive in a protected landscape. The future projections paint even degraded scenarios, with a predicted decline of over 34% and excessive fragmentation in suitable habitat extent. In addition, the present study identifies precipitation seasonality and elevation as the primary contributing predictors to the distribution of this species. Furthermore, the study identifies nine designated transboundary PAs within the IUCN extent of the Red Goral and the connectivity among them to highlight the crucial role in supporting the species' survival over time. Moreover, the Dibang Wildlife Sanctuary (DWLS) and Hkakaborazi National Park are revealed as the PAs with the largest extent of suitable habitat in the present scenario. Furthermore, the highest mean connectivity was found between DWLS and Mehao Wildlife Sanctuary (0.0583), while the lowest connectivity was observed between Kamlang Wildlife Sanctuary and Namdapha National Park (0.0172). The study also suggests strategic management planning that is a vital foundation for future research and conservation initiatives, aiming to ensure the long-term survival of the species in its natural habitat.
RESUMEN
The small mammalian fauna plays pivotal roles in ecosystem dynamics and as crucial biodiversity indicators. However, recent research has raised concerns about the decline of mammalian species due to climate change. Consequently, significant attention is directed toward studying various big flagship mammalian species for conservation. However, small mammals such as the hog badgers (Mustelidae: Arctonyx) remain understudied regarding the impacts of climate change in Asia. The present study offers a comprehensive analysis of climate change effects on two mainland hog badger species, utilizing ensemble species distribution modeling. Findings reveal concerning outcomes, as only 52% of the IUCN extent is deemed suitable for the Great Hog Badger (Arctonyx collaris) and a mere 17% is ideal for the Northern Hog Badger (Arctonyx albogularis). Notably, projections suggest a potential reduction of over 26% in suitable areas for both species under future climate scenarios, with the most severe decline anticipated in the high-emission scenario of SSP585. These declines translate into evident habitat fragmentation, particularly impacting A. collaris, whose patches shrink substantially, contrasting with the relatively stable patches of A. albogularis. However, despite their differences, niche overlap analysis reveals an intriguing increase in overlap between the two species, indicating potential ecological shifts. The study underscores the importance of integrating climate change and habitat fragmentation considerations into conservation strategies, urging a reassessment of the IUCN status of A. albogularis. The insights gained from this research are crucial for improving protection measures by ensuring adequate legal safeguards and maintaining ecological corridors between viable habitat patches, which are essential for the conservation of hog badgers across mainland Asia. Furthermore, emphasizing the urgency of proactive efforts, particularly in countries with suitable habitats can help safeguard these small mammalian species and their ecosystems from the detrimental impacts of climate change.
RESUMEN
The endangered and poorly known Swamp Grass-babbler, Laticilla cinerascens (Passeriformes: Pellorneidae), confronts critical threats and vulnerability due to its specific habitat requirements and restricted populations in the northeastern region of the Indian Subcontinent. This study investigates the distribution of the species, habitat quality, geometry and shape complexity of connectivity among the protected areas (PAs), and responses to climate change in Northeast India under different climate change pathways by utilizing ensemble distribution models, and ecological metrics. From the total distribution extent (1,42,000 km2), approximately 9366 km2 (6.59 %) is identified as the suitable habitat for this threatened species. Historically centered around Dibru Saikhowa National Park (DSNP), the species faced a drastic decline due to anthropogenic activities and alteration in land use and lover cover. The study also reveals a significant decline in suitable habitat for L. cinerascens in future climate scenarios, with alarming reductions under SSP126 (>10 % in the timeframe 2041-2060 and > 30 % from 2061 to 2080), SSP245 (>90 % in both time periods), and SSP585 (>90 % in both timeframes) from the present scenario. At present, DSNP has the most suitable habitat within the distribution range but is projected to decline (>90 %) under more severe climate change scenarios, as observed in other PAs. Landscape fragmentation analysis indicates a shift in habitat geometry, highlighting the intricate impact of climate change. It predicts a substantial 343 % increase (in the SSP126) in small habitat patches in the future. Connectivity analysis among PAs shows a significant shift, with a decline exceeding 20 %. The analysis of shape complexity and connectivity geometry reveals a significant increase of over 220 % in the fragmentation of connectivity among PAs between 2061 and 2080 under the SSP585 climate change scenario compared to the present conditions. The study underscores the urgent need for conservation actions, emphasizing the complex interplay of climate change, habitat suitability, and fragmentation. Prioritizing PAs with suitable habitats and assessing their connectivity is crucial. Adaptive management strategies are essential to address ongoing environmental changes and safeguard biodiversity. Future research in critical areas is needed to establish long-term monitoring programs to lead/extend effective conservation strategies.
RESUMEN
The hispid hare, Caprolagus hispidus, belonging to the family Leporidae is a small grassland mammal found in the southern foothills of the Himalayas, in India, Nepal, and Bhutan. Despite having an endangered status according to the IUCN Red List, it lacks studies on its distribution and is threatened by habitat loss and land cover changes. Thus, the present study attempted to assess the habitat suitability using the species distribution model approach for the first time and projected its future in response to climate change, habitat, and urbanization factors. The results revealed that out of the total geographical extent of 188,316 km2, only 11,374 km2 (6.03%) were identified as suitable habitat for this species. The results also revealed that habitat significantly declined across its range (>60%) under certain climate change scenarios. Moreover, in the present climate scenario protected areas such as Shuklaphanta National Park (0.837) in Nepal exhibited the highest mean extent of habitat whereas, in India, Dibru-Saikhowa National Park (0.631) is found to be the most suitable habitat. Notably, two protected areas in Uttarakhand, India, specifically Corbett National Park (0.530) and Sonanandi Wildlife Sanctuary (0.423), have also demonstrated suitable habitats for C. hispidus. Given that protected areas showing a future rise in habitat suitability might also be regarded as potential sites for species translocation, this study underscores the importance of implementing proactive conservation strategies to mitigate the adverse impacts of climate change on this species. It is essential to prioritize habitat restoration, focused protection measures, and further species-level ecological exploration to address these challenges effectively. Furthermore, fostering transboundary collaboration and coordinated conservation actions between nations is crucial to safeguarding the long-term survival of the species throughout its distribution range.