Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Gene ; 893: 147897, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37832806

RESUMEN

The SLC9C1 gene (which encodes the NHE10 protein) is essential for male fertility in both mice and humans, however the epigenetic mechanisms regulating its testis/sperm-specific gene expression have yet to be studied. Here we identify and characterize DNA regulatory elements of the SLC9C1 gene across three mammalian species: mouse, rat, and human. First, in silico analysis of these mammalian SLC9C1 genes identified a CpG island located upstream of the transcription start site in the same relative position in all three genes. Further analysis reveals that this CpG island behaves differently, with respect to gene regulatory activity, in the mouse SLC9C1 gene than it does in the rat and human SLC9C1 gene. The mouse SLC9C1 CpG island displays strong promoter activity by itself and seems to have a stronger gene regulatory effect than either the rat or human SLC9C1 CpG islands. While the function of the upstream SLC9C1 CpG island may be divergent across the three studied species, it appears that the promoters of these three mammalian SLC9C1 genes share similar DNA methylation-sensitive regulatory mechanisms. All three SLC9C1 promoter regions are differentially methylated in lung and testis, being more hypermethylated in lung relative to the testis, and DNA sequence alignments provide strong evidence of primary sequence conservation. Luciferase assays reveal that in vitro methylation of constructs containing different elements of the three SLC9C1 genes largely exhibit methylation-sensitive promoter activity (reduced promoter activity when methylated) in both HEK 293 and GC-1spg cells. In total, our data suggest that the DNA methylation-sensitive elements of the mouse, rat, and human SLC9C1 promoters are largely conserved, while the upstream SLC9C1 CpG island common to all three species seems to perform a different function in mouse than it does in rat and human. This work provides evidence that while homologous genes can all be regulated by DNA methylation-dependent epigenetic mechanisms, the location of the specific cis-regulatory elements responsible for this regulation can differ across species.


Asunto(s)
Metilación de ADN , Semen , Intercambiadores de Sodio-Hidrógeno , Animales , Humanos , Masculino , Ratones , Ratas , Islas de CpG , ADN , Regulación de la Expresión Génica , Células HEK293 , Intercambiadores de Sodio-Hidrógeno/genética
2.
bioRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693488

RESUMEN

The SLC9C1 gene (which encodes the NHE10 protein) is essential for male fertility in both mice and humans, however the epigenetic mechanisms regulating its testis/sperm-specific gene expression have yet to be studied. Here we identify and characterize DNA regulatory elements of the SLC9C1 gene across three mammalian species: mouse, rat, and human. First, in silico analysis of these mammalian SLC9C1 genes identified a CpG island located upstream of the transcription start site in the same relative position in all three genes. Further analysis reveals that this CpG island behaves differently, with respect to gene regulatory activity, in the mouse SLC9C1 gene than it does in the rat and human SLC9C1 gene. The mouse SLC9C1 CpG island displays strong promoter activity by itself and seems to have a stronger gene regulatory effect than either the rat or human SLC9C1 CpG islands. While the function of the upstream SLC9C1 CpG island may be divergent across the three studied species, it appears that the promoters of these three mammalian SLC9C1 genes share similar DNA methylation-sensitive regulatory mechanisms. All three SLC9C1 promoter regions are differentially methylated in lung and testis, being more hypermethylated in lung relative to the testis, and DNA sequence alignments provide strong evidence of primary sequence conservation. Luciferase assays reveal that in vitro methylation of constructs containing different elements of the three SLC9C1 genes largely exhibit methylation-sensitive promoter activity (reduced promoter activity when methylated) in both HEK 293 and GC-1spg cells. In total, our data suggest that the DNA methylation-sensitive elements of the mouse, rat, and human SLC9C1 promoters are largely conserved, while the upstream SLC9C1 CpG island common to all three species seems to perform a different function in mouse than it does in rat and human. This work provides evidence that while homologous genes can all be regulated by DNA methylation-dependent epigenetic mechanisms, the location of the specific cis-regulatory elements responsible for this regulation can differ across species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA