Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicology ; 509: 153967, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384009

RESUMEN

As the use of lanthanides increases in many industries, concerns regarding their impact on human health rise. However, until recently, the toxicological profile of these elements had been incompletely characterized, with most studies relying on biodistribution assessments and lethal dose determinations in different animal models. In the last few years, the f-element field has started to pivot towards other examination types that identify cellular and molecular mechanisms of toxicity in a high-throughput manner. Under this new paradigm, functional genomics techniques, which rely on genetically modified cells or model organisms with missing genes or proteins, are becoming fundamental to gain novel insights into the genetic and proteomic bases of lanthanide toxicity, as well as to identify potential therapeutic targets to minimize the harmful effects of the metals. This review aims to provide an updated perspective on current efforts using functional genomics to characterize the toxicity and biological impact of lanthanides and improve their safety in different industrial applications.

2.
Inorg Chem ; 63(42): 19752-19758, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39375943

RESUMEN

Curium's stable redox chemistry and ability to emit strong metal-based luminescence make it uniquely suitable for spectroscopic studies among the actinide series. Targeted ligand and coordination compound design can support both fundamental electronic structure studies and industrial safeguards with the identification of unique spectroscopic signatures. However, limited availability, inherent radioactive hazards, and arduous purifications have long inhibited such investigations of this element. A consolidated reprocessing procedure for curium has been developed for the milligram scale. The recovery of not only standard legacy curium samples but also hazardous legacy perchlorate containing curium samples was achieved, culminating in column chromatography utilizing the extraction resin DGA (N,N,N',N'-tetra-2-ethylhexyldiglycolamide, branched). Surprisingly, controlled elution of the Cm band from the extraction resin was followed through bright pink luminescence triggered by an inexpensive hand-held UV-vis lamp (380-400 nm). This observation inspired the design of an enantiopure, C2-symmetrical ligand bearing a chiral (trans-1,2-diaminocyclohexane) backbone with achiral DGA moieties (N,N,N',N'-tetra-n-octylacetamide), that enabled rarely observed curium circularly polarized luminescence upon metal chelation. These combined achievements should unlock more luminescence and circularly polarized luminescence studies of curium, and enable the recovery of many curium and other trivalent actinide samples.

3.
Metallomics ; 16(10)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39313325

RESUMEN

Past functional toxicogenomic studies have indicated that genes relevant to membrane lipid synthesis are important for tolerance to the lanthanides. Moreover, previously reported imaging of patient's brains following administration of gadolinium-based contrast agents shows gadolinium lining the vessels of the brain. Taken together, these findings suggest the disruption of cytoplasmic membrane integrity as a mechanism by which lanthanides induce cytotoxicity. In the presented work we used scanning transmission electron microscopy and spatially resolved elemental spectroscopy to image the morphology and composition of gadolinium, europium, and samarium precipitates that formed on the outside of yeast cell membranes. In no sample did we find that the lanthanide contaminant had crossed the cell membrane, even in experiments using yeast mutants with disrupted genes for sphingolipid synthesis-the primary lipids found in yeast cytoplasmic membranes. Rather, we have evidence that lanthanides are co-located with phosphorus outside the yeast cells. These results lead us to hypothesize that the lanthanides scavenge or otherwise form complexes with phosphorus from the sphingophospholipid head groups in the cellular membrane, thereby compromising the structure or function of the membrane, and gaining the ability to disrupt membrane function without entering the cell.


Asunto(s)
Membrana Celular , Gadolinio , Saccharomyces cerevisiae , Gadolinio/toxicidad , Gadolinio/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura
4.
Inorg Chem ; 63(39): 18417-18428, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39284039

RESUMEN

Amidate-based ligands (N-(tert-butyl)isobutyramide, ITA) bind κ2 to form homoleptic, 8-coordinate complexes with tetravalent 237Np (Np(ITA)4, 1-Np) and 242Pu (Pu(ITA)4, 1-Pu). These compounds complete an isostructural series from Th, U-Pu and allow for the direct comparison between many of the early actinides with stable tetravalent oxidation states by nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction (SCXRD). The molecular precursors are subjected to controlled thermolysis under mild conditions with the exclusion of exogenous air and moisture, facilitating the removal of the volatile organic ligands and ligand byproducts. The preformed metal-oxygen bond in the precursor, as well as the metal oxidation state, are maintained through the decomposition, forming fully stoichiometric, oxidation-state pure NpO2 and PuO2. Powder X-ray diffraction (PXRD), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) elemental mapping supported the evaluation of these high-purity materials. This chemistry is applicable to a wide range of metals, including actinides, with accessible tetravalent oxidation states, and provides a consistent route to analytical standards of importance to the field of nuclear nonproliferation, forensics, and fundamental studies.

5.
Angew Chem Int Ed Engl ; : e202412535, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212324

RESUMEN

The first example of circularly polarized luminescence (CPL) from a molecular americium (Am) complex is reported. Coordination of Am(III) by a combination of thenoyltrifluoroacetonate and a chiral diphosphine oxide ligand yielded a complex with strong sensitized metal-centered luminescence. The energy transfer process for sensitization appears to occur via a unique resonant pathway, which results in the removal of the overlap between ligand phosphorescence and sensitized Am luminescence that has often been observed. Owing to this feature, and despite the limited amount of material that could be used due to the radioactivity of 241Am, CPL could be measured. The collected luminescence and CPL spectra provide insight into the crystal field splitting of the 5D1→7F1 transition. These results pave the way for future studies of Am(III) luminescence to investigate electronic structure effects in this and other 5 f elements.

6.
PLoS One ; 19(7): e0305034, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954719

RESUMEN

Yersinia pestis, the causative agent of plague and a biological threat agent, presents an urgent need for novel medical countermeasures due to documented cases of naturally acquired antibiotic resistance and potential person-to-person spread during a pneumonic infection. Immunotherapy has been proposed as a way to circumvent current and future antibiotic resistance. Here, we describe the development and characterization of two affinity matured human antibodies (αF1Ig AM2 and αF1Ig AM8) that promote survival of mice after exposure to aerosolized Y. pestis. We share details of the error prone PCR and yeast display technology-based affinity maturation process that we used. The resultant matured antibodies have nanomolar affinity for Y. pestis F1 antigen, are produced in high yield, and are resilient to 37°C stress for up to 6 months. Importantly, in vitro assays using a murine macrophage cell line demonstrated that αF1Ig AM2 and αF1Ig AM8 are opsonic. Even more importantly, in vivo studies using pneumonic plague mouse models showed that 100% of the mice receiving 500 µg of IgGs αF1Ig AM2 and αF1Ig AM8 survived lethal challenge with aerosolized Y. pestis CO92. Combined, these results provide evidence of the quality and robustness of αF1Ig AM2 and αF1Ig AM8 and support their development as potential medical countermeasures against plague.


Asunto(s)
Anticuerpos Antibacterianos , Peste , Yersinia pestis , Animales , Humanos , Ratones , Yersinia pestis/inmunología , Peste/inmunología , Peste/prevención & control , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Femenino , Afinidad de Anticuerpos , Contramedidas Médicas , Antígenos Bacterianos/inmunología , Modelos Animales de Enfermedad
7.
Nat Commun ; 15(1): 5741, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009580

RESUMEN

Targeted alpha therapy (TAT) pairs the specificity of antigen targeting with the lethality of alpha particles to eradicate cancerous cells. Actinium-225 [225Ac; t1/2 = 9.920(3) days] is an alpha-emitting radioisotope driving the next generation of TAT radiopharmaceuticals. Despite promising clinical results, a fundamental understanding of Ac coordination chemistry lags behind the rest of the Periodic Table due to its limited availability, lack of stable isotopes, and inadequate systems poised to probe the chemical behavior of this radionuclide. In this work, we demonstrate a platform that combines an 8-coordinate synthetic ligand and a mammalian protein to characterize the solution and solid-state behavior of the longest-lived Ac isotope, 227Ac [t1/2 = 21.772(3) years]. We expect these results to direct renewed efforts for 225Ac-TAT development, aid in understanding Ac coordination behavior relative to other +3 lanthanides and actinides, and more broadly inform this element's position on the Periodic Table.


Asunto(s)
Actinio , Quelantes , Actinio/química , Quelantes/química , Cristalización , Radiofármacos/química , Humanos , Ligandos
8.
Phys Med Biol ; 69(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38810634

RESUMEN

Objective. The purpose of this study was to assess a method of accelerating Monte Carlo simulations for modeling depth dose distributions from megavoltage x-ray beams by fitting them to an empirically-derived function.Approach. Using Geant4, multiple simulations of a typical medical linear accelerator beam in water and in water with an air cavity were conducted with varying numbers of initial electrons. The resulting percent depth dose curves were compared to published data from actual linear accelerator measurements. Two methods were employed to reduce computation time for this modeling process. First, an empirical function derived from measurements at a particular linear accelerator energy, source-to-surface distance, and field size was used to directly fit the simulated data. Second, a linear regression was performed to predict the empirical function's parameters for simulations with more initial electrons.Main results. Fitting simulated depth dose curves with the empirical function yielded significant improvements in either accuracy or computation time, corresponding to the two methods described. When compared to published measurements, the maximum error for the largest simulation was 5.58%, which was reduced to 2.01% with the best fit of the function. Fitting the empirical function around the air cavity heterogeneity resulted in errors less than 2.5% at the interfaces. The linear regression prediction modestly improved the same simulation with a maximum error of 4.22%, while reducing the required computation time from 66.53 h to 43.75 h.Significance. This study demonstrates the effective use of empirical functions to expedite Monte Carlo simulations for a range of applications from radiation protection to food sterilization. These results are particularly impactful in radiation therapy treatment planning, where time and accuracy are especially valuable. Employing these methods may improve patient outcomes by ensuring that dose delivery more accurately matches the prescription or by shortening the preparation time before treatment in Monte Carlo-based treatment planning systems.


Asunto(s)
Método de Montecarlo , Agua , Dosis de Radiación , Rayos X , Dosificación Radioterapéutica , Radiometría/métodos , Aceleradores de Partículas , Planificación de la Radioterapia Asistida por Computador/métodos , Factores de Tiempo
9.
J Am Chem Soc ; 146(11): 7487-7497, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38466925

RESUMEN

Upconverting nanoparticles (UCNPs) exhibit unique nonlinear optical properties that can be harnessed in microscopy, sensing, and photonics. However, forming high-resolution nano- and micropatterns of UCNPs with large packing fractions is still challenging. Additionally, there is limited understanding of how nanoparticle patterning chemistries are affected by the particle size. Here, we explore direct patterning chemistries for 6-18 nm Tm3+-, Yb3+/Tm3+-, and Yb3+/Er3+-based UCNPs using ligands that form either new ionic linkages or covalent bonds between UCNPs under ultraviolet (UV), electron-beam (e-beam), and near-infrared (NIR) exposure. We study the effect of UCNP size on these patterning approaches and find that 6 nm UCNPs can be patterned with compact ionic-based ligands. In contrast, patterning larger UCNPs requires long-chain, cross-linkable ligands that provide sufficient interparticle spacing to prevent irreversible aggregation upon film casting. Compared to approaches that use a cross-linkable liquid monomer, our patterning method limits the cross-linking reaction to the ligands bound on UCNPs deposited as a thin film. This highly localized photo-/electron-initiated chemistry enables the fabrication of densely packed UCNP patterns with high resolutions (∼1 µm with UV and NIR exposure; <100 nm with e-beam). Our upconversion NIR lithography approach demonstrates the potential to use inexpensive continuous-wave lasers for high-resolution 2D and 3D lithography of colloidal materials. The deposited UCNP patterns retain their upconverting, avalanching, and photoswitching behaviors, which can be exploited in patterned optical devices for next-generation UCNP applications.

10.
Nat Chem ; 16(2): 147-148, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253672
11.
Inorg Chem ; 62(50): 20721-20732, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590371

RESUMEN

Thorium-227 (227Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups. Both chelators can be synthesized in less than six steps from readily available starting materials, which is an advantage over currently available platforms. The complex formation constants (log ßmlh) of these ligands with Zr4+ and Th4+, measured by spectrophotometric titrations, are greater than 34 for both chelators, indicating the formation of exceedingly stable complexes. Radiolabeling studies were performed to show that these ligands can bind [227Th]Th4+ at concentrations as low as 10-6 M, and serum stability experiments demonstrate the high kinetic stability of the formed complexes under biological conditions. Identical experiments with zirconium-89 (89Zr), a positron-emitting radioisotope used for positron emission tomography (PET) imaging, demonstrate that these chelators can also effectively bind Zr4+ with high thermodynamic and kinetic stability. Collectively, the data reported herein highlight the suitability of these ligands for use in 89Zr/227Th paired radioimmunotheranostics.


Asunto(s)
Quelantes , Radiofármacos , Torio , Radioisótopos , Circonio , Tomografía de Emisión de Positrones/métodos , Ligandos
12.
RSC Chem Biol ; 4(8): 587-591, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37547455

RESUMEN

The mammalian protein siderocalin binds bacterial siderophores and their iron complexes through cation-π and electrostatic interactions, but also displays high affinity for hydroxypyridinone complexes of trivalent lanthanides and actinides. In order to circumvent synthetic challenges, the use of siderocalin-antibody fusion proteins is explored herein as an alternative targeting approach for precision delivery of trivalent radiometals. We demonstrate the viability of this approach in vivo, using the theranostic pair 90Y (ß-, t1/2 = 64 h)/86Y (ß+, t1/2 = 14.7 h) in a SKOV-3 xenograft mouse model. Ligand radiolabeling with octadentate hydroxypyridinonate 3,4,3-LI(1,2-HOPO) and subsequent protein binding were achieved at room temperature. The results reported here suggest that the rapid non-covalent binding interaction between siderocalin fusion proteins and the negatively charged Y(iii)-3,4,3-LI(1,2-HOPO) complexes could enable purification-free, cold-kit labeling strategies for the application of therapeutically relevant radiometals in the clinic.

13.
Metallomics ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37336558

RESUMEN

Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity. In the current study, we employed genome-wide functional screening to help understand biological effects of exposure to Yb(III) and Lu(III), which were selected as representatives of the late lanthanides. As a model organism, we used Saccharomyces cerevisiae, since it shares many biological functions with humans. Analysis of the functional screening results indicated toxicity of late lanthanides is consistent with disruption of vesicle-mediated transport, and further supported a role for calcium transport processes and mitophagy in mitigating toxicity. Unexpectedly, our analysis suggested that late lanthanides target proteins with SH3 domains, which may underlie the observed toxicity. This study provides fundamental insights into the unique biological chemistry of late lanthanides, which may help devise new avenues toward the development of decorporation strategies and bio-inspired separation processes.


Asunto(s)
Elementos de la Serie de los Lantanoides , Saccharomyces cerevisiae , Humanos , Elementos de la Serie de los Lantanoides/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
J Bone Miner Res ; 38(7): 1032-1042, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37191221

RESUMEN

The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4 and L5 ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Densidad Ósea , Fracturas Óseas , Ratas , Femenino , Animales , Ratas Sprague-Dawley , Densidad Ósea/fisiología , Huesos , Vértebras Lumbares , Microtomografía por Rayos X
15.
J Phys Chem B ; 127(17): 3931-3938, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37084416

RESUMEN

The octadentate hydroxypyridinone ligand 3,4,3-LI(1,2-HOPO) (abbreviated as HOPO) has been identified as a promising candidate for both chelation and f-element separation technologies, two applications that require optimal performance in radiation environments. However, the radiation robustness of HOPO is currently unknown. Here, we employ a combination of time-resolved (electron pulse) and steady-state (alpha self-radiolysis) irradiation techniques to elucidate the basic chemistry of HOPO and its f-element complexes in aqueous radiation environments. Chemical kinetics were measured for the reaction of HOPO and its Nd(III) ion complex ([NdIII(HOPO)]-) with key aqueous radiation-induced radical transients (eaq-, H• atom, and •OH and NO3• radicals). The reaction of HOPO with the eaq- is believed to proceed via reduction of the hydroxypyridinone moiety, while transient adduct spectra indicate that reactions with the H• atom and •OH and NO3• radicals proceeded by addition to HOPO's hydroxypyridinone rings, potentially allowing for the generation of an extensive suite of addition products. Complementary steady-state 241Am(III)-HOPO complex ([241AmIII(HOPO)]-) irradiations showed the gradual release of 241Am(III) ions with increasing alpha dose up to 100 kGy, although complete ligand destruction was not observed.

16.
ACS Omega ; 7(38): 34412-34419, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36188298

RESUMEN

Lanthanides are a series of elements essential to a wide range of applications, from clean energy production to healthcare. Despite their presence in multiple products and technologies, their toxicological characteristics have been only partly studied. Recently, our group has employed a genomic approach to extensively characterize the toxicity mechanisms of lanthanides. Even though we identified substantially different behaviors for mid and late lanthanides, the toxicological profiles of early lanthanides remained elusive. Here, we overcome this gap by describing a multidimensional genome-wide toxicogenomic study for two early lanthanides, namely, lanthanum and praseodymium. We used Saccharomyces cerevisiae as a model system since its genome shares many biological pathways with humans. By performing functional analysis and protein-protein interaction network analysis, we identified the main genes and proteins that participate in the yeast response to counter metal harmful effects. Moreover, our analysis also highlighted key enzymes that are dysregulated by early lanthanides, inducing cytotoxicity. Several of these genes and proteins have human orthologues, indicating that they may also participate in the human response against the metals. By highlighting the key genes and proteins in lanthanide-induced toxicity, this work may contribute to the development of new prophylactic and therapeutic strategies against lanthanide harmful exposures.

17.
Nucl Med Biol ; 110-111: 28-36, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35512517

RESUMEN

INTRODUCTION: The in vivo generator 134Ce/134La has the potential to serve as a PET imaging surrogate for both alpha-emitting 225Ac and 227Th radionuclides due to the unique CeIII/CeIV redox couple and the relatively long half-life of 134Ce. The purpose of this study was to demonstrate the compatibility of 134Ce with DOTA-based antibody drug conjugates, which would act as therapeutic agents when incorporating 225Ac. METHODS: The in vivo biodistributions of [134Ce]Ce-DOTA and [134Ce]Ce-citrate were assayed by microPET imaging over 25 h in Swiss Webster mice to determine the in vivo stability of the [134Ce]Ce-DOTA complex. L3-edge X-ray absorption spectroscopy measurements were used to confirm the Ce oxidation state and the formation of a fully coordinated Ce-DOTA complex. The in vivo biodistribution of [134Ce]Ce-DOTA-Trastuzumab was assayed over 147 h by microPET imaging in SK-OV-3 tumor-bearing NOD SCID mice to evaluate tumor uptake and in vivo stability. Mice were euthanized at 214 h after administration of the radiolabeled antibody conjugate, and imaged 1 h later. An ex vivo biodistribution experiment was then performed in order to corroborate the PET images. RESULTS: [134Ce]Ce-DOTA displayed rapid renal elimination and high in vivo stability over 25 h, with negligible bone and liver uptake, in comparison to [134Ce]Ce-citrate. L3-edge X-ray absorption spectroscopy experiments confirmed the 3+ oxidation state within the stable Ce-DOTA complex. MicroPET images of [134Ce]Ce-DOTA-Trastuzumab displayed elevated tumor uptake over 214 h, with minimal bone and liver uptake analogous to previously reported [225Ac]Ac-DOTA-Trastuzumab biodistribution results, and the ex vivo biodistribution of [134Ce]Ce-DOTA-Trastuzumab corroborated the final PET images. CONCLUSION: These results demonstrate that 134Ce allows for long-term tumor targeting with DOTA-based antibody drug conjugates and may therefore be used to trace antibody drug conjugates incorporating 225Ac.


Asunto(s)
Inmunoconjugados , Animales , Línea Celular Tumoral , Citratos , Ratones , Ratones SCID , Tomografía de Emisión de Positrones , Distribución Tisular , Trastuzumab
18.
J Synchrotron Radiat ; 29(Pt 2): 315-322, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254293

RESUMEN

The solution-state interactions of plutonium and berkelium with the octadentate chelator 3,4,3-LI(1,2-HOPO) (343-HOPO) were investigated and characterized by X-ray absorption spectroscopy, which revealed in situ reductive decomposition of the tetravalent species of both actinide metals to yield Pu(III) and Bk(III) coordination complexes. X-ray absorption near-edge structure (XANES) measurements were the first indication of in situ synchrotron redox chemistry as the Pu threshold and white-line position energies for Pu-343-HOPO were in good agreement with known diagnostic Pu(III) species, whereas Bk-343-HOPO results were found to mirror the XANES behavior of Bk(III)-DTPA. Extended X-ray absorption fine structure results revealed An-OHOPO bond distances of 2.498 (5) and 2.415 (2) Šfor Pu and Bk, respectively, which match well with bond distances obtained for trivalent actinides and 343-HOPO via density functional theory calculations. Pu(III)- and Bk(III)-343-HOPO data also provide initial insight into actinide periodicity as they can be compared with previous results with Am(III)-, Cm(III)-, Cf(III)-, and Es(III)-343-HOPO, which indicate there is likely an increase in 5f covalency and heterogeneity across the actinide series.


Asunto(s)
Complejos de Coordinación , Plutonio , Berkelio , Quelantes/química , Plutonio/química
19.
Mol Omics ; 18(3): 237-248, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35040455

RESUMEN

Gadolinium is a metal used in contrast agents for magnetic resonance imaging. Although gadolinium is widely used in clinical settings, many concerns regarding its toxicity and bioaccumulation after gadolinium-based contrast agent administration have been raised and published over the last decade. To date, most toxicological studies have focused on identifying acute effects following gadolinium exposure, rather than investigating associated toxicity mechanisms. In this study, we employ functional toxicogenomics to assess mechanistic interactions of gadolinium with Saccharomyces cerevisiae. Furthermore, we determine which mechanisms are conserved in humans, and their implications for diseases related to the use of gadolinium-based contrast agents in medicine. A homozygous deletion pool of 4291 strains were screened to identify biological functions and pathways disturbed by the metal. Gene ontology and pathway enrichment analyses showed endocytosis and vesicle-mediated transport as the main yeast response to gadolinium, while certain metabolic processes, such as glycosylation, were the primary disrupted functions after the metal treatments. Cluster and protein-protein interaction network analyses identified proteins mediating vesicle-mediated transport through the Golgi apparatus and the vacuole, and vesicle cargo exocytosis as key components to reduce the metal toxicity. Moreover, the metal seemed to induce cytotoxicity by disrupting the function of enzymes (e.g. transferases and proteases) and chaperones involved in metabolic processes. Several of the genes and proteins associated with gadolinium toxicity are conserved in humans, suggesting that they may participate in pathologies linked to gadolinium-based contrast agent exposures. We thereby discuss the potential role of these conserved genes and gene products in gadolinium-induced nephrogenic systemic fibrosis, and propose potential prophylactic strategies to prevent its adverse health effects.


Asunto(s)
Medios de Contraste , Gadolinio , Medios de Contraste/toxicidad , Gadolinio/toxicidad , Homocigoto , Humanos , Imagen por Resonancia Magnética/efectos adversos , Imagen por Resonancia Magnética/métodos , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Toxicogenética
20.
J Am Chem Soc ; 144(2): 854-861, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985894

RESUMEN

Rare-earth elements, which include the lanthanide series, are key components of many clean energy technologies, including wind turbines and photovoltaics. Because most of these 4f metals are at high risk of supply chain disruption, the development of new recovery technologies is necessary to avoid future shortages, which may impact renewable energy production. This paper reports the synthesis of a non-natural biogenic material as a potential platform for bioinspired lanthanide extraction. The biogenic material takes advantage of the atomically precise structure of a 2D crystalline protein lattice with the high lanthanide binding affinity of hydroxypyridinonate chelators. Luminescence titration data demonstrated that the engineered protein layers have affinities for all tested lanthanides in the micromolar-range (dissociation constants) and a higher binding affinity for the lanthanide ions with a smaller ionic radius. Furthermore, competitive titrations confirmed the higher selectivity (up to several orders of magnitude) of the biogenic material for lanthanides compared to other cations commonly found in f-element sources. Lastly, the functionalized protein layers could be reused in several cycles by desorbing the bound metal with citrate solutions. Taken together, these results highlight biogenic materials as promising bioadsorption platforms for the selective binding of lanthanides, with potential applications in the recovery of these critical elements from waste.


Asunto(s)
Quelantes/química , Metales de Tierras Raras/análisis , Proteínas/química , Concentración de Iones de Hidrógeno , Elementos de la Serie de los Lantanoides/análisis , Elementos de la Serie de los Lantanoides/aislamiento & purificación , Elementos de la Serie de los Lantanoides/metabolismo , Ligandos , Metales de Tierras Raras/aislamiento & purificación , Metales de Tierras Raras/metabolismo , Proteínas/metabolismo , Piridinas/química , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...