Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(10): 15564-15578, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157655

RESUMEN

We report the resonantly enhanced radiative emission from a single SiGe quantum dot (QD), which is deterministically embedded into a bichromatic photonic crystal resonator (PhCR) at the position of its largest modal electric field by a scalable method. By optimizing our molecular beam epitaxy (MBE) growth technique, we were able to reduce the amount of Ge within the whole resonator to obtain an absolute minimum of exactly one QD, accurately positioned by lithographic methods relative to the PhCR, and an otherwise flat, a few monolayer thin, Ge wetting layer (WL). With this method, record quality (Q) factors for QD-loaded PhCRs up to Q ∼ 105 are achieved. A comparison with control PhCRs on samples containing a WL but no QDs is presented, as well as a detailed analysis of the dependence of the resonator-coupled emission on temperature, excitation intensity, and emission decay after pulsed excitation. Our findings undoubtedly confirm a single QD in the center of the resonator as a potentially novel photon source in the telecom spectral range.

2.
Small ; 18(44): e2204178, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36135726

RESUMEN

Si1-x Gex is a key material in modern complementary metal-oxide-semiconductor and bipolar devices. However, despite considerable efforts in metal-silicide and -germanide compound material systems, reliability concerns have so far hindered the implementation of metal-Si1-x Gex junctions that are vital for diverse emerging "More than Moore" and quantum computing paradigms. In this respect, the systematic structural and electronic properties of Al-Si1-x Gex heterostructures, obtained from a thermally induced exchange between ultra-thin Si1-x Gex nanosheets and Al layers are reported. Remarkably, no intermetallic phases are found after the exchange process. Instead, abrupt, flat, and void-free junctions of high structural quality can be obtained. Interestingly, ultra-thin interfacial Si layers are formed between the metal and Si1-x Gex segments, explaining the morphologic stability. Integrated into omega-gated Schottky barrier transistors with the channel length being defined by the selective transformation of Si1-x Gex into single-elementary Al leads, a detailed analysis of the transport is conducted. In this respect, a report on a highly versatile platform with Si1-x Gex composition-dependent properties ranging from highly transparent contacts to distinct Schottky barriers is provided. Most notably, the presented abrupt, robust, and reliable metal-Si1-x Gex junctions can open up new device implementations for different types of emerging nanoelectronic, optoelectronic, and quantum devices.

3.
MRS Bull ; 47(4): 359-370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968543

RESUMEN

In situ transmission electron microscopy (TEM) is a powerful tool for advanced material characterization. It allows real-time observation of structural evolution at the atomic level while applying different stimuli such as heat. However, the validity of analysis strongly depends on the quality of the specimen, which has to be prepared by thinning the bulk material to electron transparency while maintaining the pristine properties. To address this challenge, a novel method of TEM samples preparation in plan-view geometry was elaborated based on the combination of the wedge polishing technique and an enhanced focused ion beam (FIB) workflow. It involves primary mechanical thinning of a broad sample area from the backside followed by FIB-assisted installation on the MEMS-based sample carrier. The complete step-by-step guide is provided, and the method's concept is discussed in detail making it easy to follow and adapt for diverse equipment. The presented approach opens the world of in situ TEM heating experiments for a vast variety of fragile materials. The principle and significant advantage of the proposed method are demonstrated by new insights into the stability and thermal-induced strain relaxation of Ge Stranski-Krastanov islands on Si during in situ TEM heating. Supplementary Information: The online version contains supplementary material available at 10.1557/s43577-021-00255-5.

4.
Sci Rep ; 11(1): 20597, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663889

RESUMEN

The Si/SiGe heterosystem would be ideally suited for the realization of complementary metal-oxide-semiconductor (CMOS)-compatible integrated light sources, but the indirect band gap, exacerbated by a type-II band offset, makes it challenging to achieve efficient light emission. We address this problem by strain engineering in ordered arrays of vertically close-stacked SiGe quantum dot (QD) pairs. The strain induced by the respective lower QD creates a preferential nucleation site for the upper one and strains the upper QD as well as the Si cap above it. Electrons are confined in the strain pockets in the Si cap, which leads to an enhanced wave function overlap with the heavy holes near the upper QD's apex. With a thickness of the Si spacer between the stacked QDs below 5 nm, we separated the functions of the two QDs: The role of the lower one is that of a pure stressor, whereas only the upper QD facilitates radiative recombination of QD-bound excitons. We report on the design and strain engineering of the QD pairs via strain-dependent Schrödinger-Poisson simulations, their implementation by molecular beam epitaxy, and a comprehensive study of their structural and optical properties in comparison with those of single-layer SiGe QD arrays. We find that the double QD arrangement shifts the thermal quenching of the photoluminescence signal at higher temperatures. Moreover, detrimental light emission from the QD-related wetting layers is suppressed in the double-QD configuration.

5.
Opt Express ; 27(22): 32009-32018, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684421

RESUMEN

We demonstrate p-type SiGe quantum well infrared photodetectors (QWIPs) on a strained-silicon-on-insulator (sSOI) substrate. The sSOI system allows strain-balancing between the QWIP heterostructure with an average composition of Si0.7Ge0.3 and the substrate, and therefore lifts restrictions to the active material thickness faced by SiGe growth on silicon or silicon-on-insulator substrates. The realized sSOI QWIPs feature a responsivity peak at detection wavelengths around 6 µm, based on a transition between heavy-hole states. The fabricated devices have been thoroughly characterized and compared to equivalent material simultaneously grown on virtual Si0.7Ge0.3 substrates based on graded SiGe buffers. Responsivities of up to 3.6 mA/W are achieved by the sSOI QWIPs at 77 K, demonstrating the large potential of sSOI-based devices as components for a group-IV optoelectronic platform in the mid-infrared spectral region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...