Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FASEB J ; 34(2): 3179-3196, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31916625

RESUMEN

ISOC is a cation current permeating the ISOC channel. In pulmonary endothelial cells, ISOC activation leads to formation of inter-endothelial cell gaps and barrier disruption. The immunophilin FK506-binding protein 51 (FKBP51), in conjunction with the serine/threonine protein phosphatase 5C (PPP5C), inhibits ISOC . Free PPP5C assumes an autoinhibitory state, which has low "basal" catalytic activity. Several S100 protein family members bind PPP5C increasing PPP5C catalytic activity in vitro. One of these family members, S100A6, exhibits a calcium-dependent translocation to the plasma membrane. The goal of this study was to determine whether S100A6 activates PPP5C in pulmonary endothelial cells and contributes to ISOC inhibition by the PPP5C-FKBP51 axis. We observed that S100A6 activates PPP5C to dephosphorylate tau T231. Following ISOC activation, cytosolic S100A6 translocates to the plasma membrane and interacts with the TRPC4 subunit of the ISOC channel. Global calcium entry and ISOC are decreased by S100A6 in a PPP5C-dependent manner and by FKBP51 in a S100A6-dependent manner. Further, calcium entry-induced endothelial barrier disruption is decreased by S100A6 dependent upon PPP5C, and by FKBP51 dependent upon S100A6. Overall, these data reveal that S100A6 plays a key role in the PPP5C-FKBP51 axis to inhibit ISOC and protect the endothelial barrier against calcium entry-induced disruption.


Asunto(s)
Señalización del Calcio , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/metabolismo , Proteína A6 de Unión a Calcio de la Familia S100/metabolismo , Animales , Células Cultivadas , Endotelio Vascular/citología , Pulmón/irrigación sanguínea , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Unión Proteica , Transporte de Proteínas , Ratas , Canales Catiónicos TRPC/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo
2.
Mol Cancer Ther ; 18(3): 556-566, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30679389

RESUMEN

LB-100 is an experimental cancer therapeutic with cytotoxic activity against cancer cells in culture and antitumor activity in animals. The first phase I trial (NCT01837667) evaluating LB-100 recently concluded that safety and efficacy parameters are favorable for further clinical testing. Although LB-100 is widely reported as a specific inhibitor of serine/threonine phosphatase 2A (PP2AC/PPP2CA:PPP2CB), we could find no experimental evidence in the published literature demonstrating the specific engagement of LB-100 with PP2A in vitro, in cultured cells, or in animals. Rather, the premise for LB-100 targeting PP2AC is derived from studies that measure phosphate released from a phosphopeptide (K-R-pT-I-R-R) or inferred from the ability of LB-100 to mimic activity previously reported to result from the inhibition of PP2AC by other means. PP2AC and PPP5C share a common catalytic mechanism. Here, we demonstrate that the phosphopeptide used to ascribe LB-100 specificity for PP2A is also a substrate for PPP5C. Inhibition assays using purified enzymes demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C. The structure of PPP5C cocrystallized with LB-100 was solved to a resolution of 1.65Å, revealing that the 7-oxabicyclo[2.2.1]heptane-2,3-dicarbonyl moiety coordinates with the metal ions and key residues that are conserved in both PP2AC and PPP5C. Cell-based studies revealed some known actions of LB-100 are mimicked by the genetic disruption of PPP5C These data demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C and suggest that the observed antitumor activity might be due to an additive effect achieved by suppressing both PP2A and PPP5C.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/química , Fosfoproteínas Fosfatasas/química , Piperazinas/química , Proteína Fosfatasa 2/química , Secuencia de Aminoácidos/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Catálisis , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Humanos , Metales/química , Metilación , Mutagénesis Sitio-Dirigida , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Piperazinas/farmacología , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/genética
3.
Pulm Circ ; 8(1): 2045893217753156, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29283027

RESUMEN

Pulmonary endothelial cells express a store-operated calcium entry current ( Isoc), which contributes to inter-endothelial cell gap formation. Isoc is regulated by a heterocomplex of proteins that includes the immunophilin FKBP51. FKBP51 inhibits Isoc by mechanisms that are not fully understood. In pulmonary artery endothelial cells (PAECs) we have shown that FKBP51 increases microtubule polymerization, an event that is critical for Isoc inhibition by FKBP51. In neurons, FKBP51 promotes microtubule stability through facilitation of tau dephosphorylation. However, FKBP51 does not possess phosphatase activity. Protein phosphatase 5 (PP5C/PPP5C) can dephosphorylate tau, and similar to FKBP51, PP5C possesses tetratricopeptide repeats (TPR) that mediate interaction with heat shock protein-90 (HSP90) chaperone/scaffolding complexes. We therefore tested whether PP5C contributes to FKBP51-mediated inhibition of Isoc. Both siRNA-mediated suppression of PP5C expression in PAECs and genetic disruption of PP5C in HEK293 cells attenuate FKBP51-mediated inhibition of Isoc. Reintroduction of catalytically competent, but not catalytically inactive PP5C, restored FKBP51-mediated inhibition of Isoc. PAEC cell fractionation studies identified both PP5C and the ISOC heterocomplex in the same membrane fractions. Further, PP5C co-precipitates with TRPC4, an essential subunit of ISOC channel. Finally, to determine if PP5C is required for FKBP51-mediated inhibition of calcium entry-induced inter-endothelial cell gap formation, we measured gap area by wide-field microscopy and performed biotin gap quantification assay and electric cell-substrate impedance sensing (ECIS®). Collectively, the data presented indicate that suppression of PP5C expression negates the protective effect of FKBP51. These observations identify PP5C as a novel member of the ISOC heterocomplex that is required for FKBP51-mediated inhibition of Isoc.

4.
J Am Chem Soc ; 139(49): 17703-17706, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29156132

RESUMEN

Selective inhibitors for each serine/threonine phosphatase (PPP) are essential to investigate the biological actions of PPPs and to guide drug development. Biologically diverse organisms (e.g., cyanobacteria, dinoflagellates, beetles) produce structurally distinct toxins that are catalytic inhibitors of PPPs. However, most toxins exhibit little selectivity, typically inhibiting multiple family members with similar potencies. Thus, the use of these toxins as chemical tools to study the relationship between individual PPPs and their biological substrates, and how disruptions in these relationships contributes to human disease, is severely limited. Here, we show that tautomycetin (TTN) is highly selective for a single PPP, protein phosphatase 1 (PP1/PPP1C). Our structure of the PP1:TTN complex reveals that PP1 selectivity is defined by a covalent bond between TTN and a PP1-specific cysteine residue, Cys127. Together, these data provide key molecular insights needed for the development of novel probes targeting single PPPs, especially PP1.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Furanos/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/metabolismo , Secuencia de Aminoácidos , Humanos , Lípidos , Modelos Moleculares , Proteína Fosfatasa 1/química , Especificidad por Sustrato
5.
Biochem Pharmacol ; 109: 14-26, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27002182

RESUMEN

Cantharidin is a natural toxin and an active constituent in a traditional Chinese medicine used to treat tumors. Cantharidin acts as a semi-selective inhibitor of PPP-family ser/thr protein phosphatases. Despite sharing a common catalytic mechanism and marked structural similarity with PP1C, PP2AC and PP5C, human PP4C was found to be insensitive to the inhibitory activity of cantharidin. To explore the molecular basis for this selectivity, we synthesized and tested novel C5/C6-derivatives designed from quantum-based modeling of the interactions revealed in the co-crystal structures of PP5C in complex with cantharidin. Structure-activity relationship studies and analysis of high-resolution (1.25Å) PP5C-inhibitor co-crystal structures reveal close contacts between the inhibitor bridgehead oxygen and both a catalytic metal ion and a non-catalytic phenylalanine residue, the latter of which is substituted by tryptophan in PP4C. Quantum chemistry calculations predicted that steric clashes with the bulkier tryptophan side chain in PP4C would force all cantharidin-based inhibitors into an unfavorable binding mode, disrupting the strong coordination of active site metal ions observed in the PP5C co-crystal structures, thereby rendering PP4C insensitive to the inhibitors. This prediction was confirmed by inhibition studies employing native human PP4C. Mutation of PP5C (F446W) and PP1C (F257W), to mimic the PP4C active site, resulted in markedly suppressed sensitivity to cantharidin. These observations provide insight into the structural basis for the natural selectivity of cantharidin and provide an avenue for PP4C deselection. The novel crystal structures also provide insight into interactions that provide increased selectivity of the C5/C6 modifications for PP5C versus other PPP-family phosphatases.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Cantaridina/química , Inhibidores Enzimáticos/química , Proteínas Nucleares/química , Fosfoproteínas Fosfatasas/química , Proteína Fosfatasa 1/química , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Unión Proteica , Dominios Proteicos , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...