Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small Methods ; 7(6): e2201605, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36908010

RESUMEN

Viability CRISPR screens have proven indispensable in parsing genome function. However, their application in new, more physiologically relevant culturing systems like patient-derived organoids (PDOs) has been much slower. To probe epigenetic contribution to gastric cancer (GC), the third leading cause of cancer-related deaths worldwide, the first negative selection CRISPR screen in GC PDOs that faithfully preserve primary tumor characteristics is performed. Extensive quality control measurements showing feasibility of CRISPR screens in primary organoid culture are provided. The screen reveals the histone lysine demethylase-1A (KDM1A) to constitute a GC vulnerability. Both genetic and pharmacological inhibition of KDM1A cause organoid growth retardation. Further, it is shown that most of KDM1A cancer-supporting functions center on repression of N-myc downstream regulates gene-1 (NDRG1). De-repression of NDRG1 by KDM1A inhibitors (KDM1Ai) causes inhibition of Wnt signaling and a strong G1 cell cycle arrest. Finally, by profiling 20 GC PDOs, it is shown that NDRG1 upregulation predicts KDM1Ai response with 100% sensitivity and 82% specificity in the tested cohort. Thus, this work pioneers the use of negative selection CRISPR screens in patient-derived organoids, identifies a marker of KDM1Ai response, and accordingly a cohort of patients who may benefit from such therapy.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Organoides/metabolismo , Organoides/patología
2.
Cancers (Basel) ; 14(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35804809

RESUMEN

Early detection of hepatocellular carcinoma (HCC) will reduce morbidity and mortality rates of this widely spread disease. Dysregulation in microRNA (miRNA) expression is associated with HCC progression. The objective is to identify a panel of differentially expressed miRNAs (DE-miRNAs) to enhance HCC early prediction in hepatitis C virus (HCV) infected patients. Candidate miRNAs were selected using a bioinformatic analysis of microarray and RNA-sequencing datasets, resulting in nine DE-miRNAs (miR-142, miR-150, miR-183, miR-199a, miR-215, miR-217, miR-224, miR-424, and miR-3607). Their expressions were validated in the serum of 44 healthy individuals, 62 non-cirrhotic HCV patients, 67 cirrhotic-HCV, and 72 HCV-associated-HCC patients using real-time PCR (qPCR). There was a significant increase in serum concentrations of the nine-candidate miRNAs in HCC and HCV patients relative to healthy individuals. MiR-424, miR-199a, miR-142, and miR-224 expressions were significantly altered in HCC compared to non-cirrhotic patients. A panel of five miRNAs improved sensitivity and specificity of HCC detection to 100% and 95.12% relative to healthy controls. Distinguishing HCC from HCV-treated patients was achieved by 70.8% sensitivity and 61.9% specificity using the combined panel, compared to alpha-fetoprotein (51.4% sensitivity and 60.67% specificity). These preliminary data show that the novel miRNAs panel (miR-150, miR-199a, miR-224, miR-424, and miR-3607) could serve as a potential non-invasive biomarker for HCC early prediction in chronic HCV patients. Further prospective studies on a larger cohort of patients should be conducted to assess the potential prognostic ability of the miRNAs panel.

3.
Cancer Res ; 82(17): 3002-3015, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35802645

RESUMEN

KRAS is the most frequently mutated oncogene in human cancer, and its activating mutations represent long-sought therapeutic targets. Programmable nucleases, particularly the CRISPR-Cas9 system, provide an attractive tool for genetically targeting KRAS mutations in cancer cells. Here, we show that cleavage of a panel of KRAS driver mutations suppresses growth in various human cancer cell lines, revealing their dependence on mutant KRAS. However, analysis of the remaining cell population after long-term Cas9 expression unmasked the occurence of oncogenic KRAS escape variants that were resistant to Cas9-cleavage. In contrast, the use of an adenine base editor to correct oncogenic KRAS mutations progressively depleted the targeted cells without the appearance of escape variants and allowed efficient and simultaneous correction of a cancer-associated TP53 mutation. Oncogenic KRAS and TP53 base editing was possible in patient-derived cancer organoids, suggesting that base editor approaches to correct oncogenic mutations could be developed for functional interrogation of vulnerabilities in a personalized manner for future precision oncology applications. SIGNIFICANCE: Repairing KRAS mutations with base editors can be used for providing a better understanding of RAS biology and may lay the foundation for improved treatments for KRAS-mutant cancers.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Sistemas CRISPR-Cas , Carcinogénesis/genética , Edición Génica , Humanos , Mutación , Neoplasias/genética , Oncogenes , Medicina de Precisión , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética
4.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33476303

RESUMEN

TAK-243 is a first-in-class inhibitor of ubiquitin-like modifier activating enzyme 1 that catalyzes ubiquitin activation, the first step in the ubiquitylation cascade. Based on its preclinical efficacy and tolerability, TAK-243 has been advanced to phase I clinical trials in advanced malignancies. Nonetheless, the determinants of TAK-243 sensitivity remain largely unknown. Here, we conducted a genome-wide CRISPR/Cas9 knockout screen in acute myeloid leukemia (AML) cells in the presence of TAK-243 to identify genes essential for TAK-243 action. We identified BEN domain-containing protein 3 (BEND3), a transcriptional repressor and a regulator of chromatin organization, as the top gene whose knockout confers resistance to TAK-243 in vitro and in vivo. Knockout of BEND3 dampened TAK-243 effects on ubiquitylation, proteotoxic stress, and DNA damage response. BEND3 knockout upregulated the ATP-binding cassette efflux transporter breast cancer resistance protein (BCRP; ABCG2) and reduced the intracellular levelsof TAK-243. TAK-243 sensitivity correlated with BCRP expression in cancer cell lines of different origins. Moreover, chemical inhibition and genetic knockdown of BCRP sensitized intrinsically resistant high-BCRP cells to TAK-243. Thus, our data demonstrate that BEND3 regulates the expression of BCRP for which TAK-243 is a substrate. Moreover, BCRP expression could serve as a predictor of TAK-243 sensitivity.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Resistencia a Antineoplásicos , Inhibidores Enzimáticos , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda , Proteínas de Neoplasias/metabolismo , Pirazoles , Pirimidinas , Proteínas Represoras/metabolismo , Sulfuros , Sulfonamidas , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportadoras de Casetes de Unión a ATP , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Genoma , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Ratones , Proteínas de Neoplasias/genética , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Proteínas Represoras/genética , Sulfuros/farmacología , Sulfuros/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...