Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39345388

RESUMEN

As cells exit mitosis and enter G1, mitotic chromosomes decompact and transcription is reestablished. Previously, Hi-C studies showed that essentially all interphase 3D genome features including A/B-compartments, TADs, and CTCF loops, are lost during mitosis. However, Hi-C remains insensitive to features such as microcompartments, nested focal interactions between cis-regulatory elements (CREs). We therefore applied Region Capture Micro-C to cells from mitosis to G1. Unexpectedly, we observe microcompartments in prometaphase, which further strengthen in ana/telophase before gradually weakening in G1. Loss of loop extrusion through condensin depletion differentially impacts microcompartments and large A/B-compartments, suggesting that they are partially distinct. Using polymer modeling, we show that microcompartment formation is favored by chromatin compaction and disfavored by loop extrusion activity, explaining why ana/telophase likely provides a particularly favorable environment. Our results suggest that CREs exhibit intrinsic homotypic affinity leading to microcompartment formation, which may explain transient transcriptional spiking observed upon mitotic exit.

2.
bioRxiv ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39229045

RESUMEN

How specific enhancer-promoter pairing is established is still mostly unclear. Besides the CTCF/cohesin machinery, only a few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Here, we show via acute degradation experiments that LDB1 directly and broadly promotes enhancer-promoter loops. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined via the use of multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1 occupied sites but may aid the formation of a subset of LDB1 anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1-phase, we establish a relationship between LDB1-dependent interactions in the context of TAD organization and gene activation. Lastly, Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. This establishes LDB1 as a direct driver of regulatory network inter-connectivity.

3.
Nat Genet ; 56(9): 1938-1952, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39210046

RESUMEN

Few transcription factors have been examined for their direct roles in physically connecting enhancers and promoters. Here acute degradation of Yin Yang 1 (YY1) in erythroid cells revealed its requirement for the maintenance of numerous enhancer-promoter loops, but not compartments or domains. Despite its reported ability to interact with cohesin, the formation of YY1-dependent enhancer-promoter loops does not involve stalling of cohesin-mediated loop extrusion. Integrating mitosis-to-G1-phase dynamics, we observed partial retention of YY1 on mitotic chromatin, predominantly at gene promoters, followed by rapid rebinding during mitotic exit, coinciding with enhancer-promoter loop establishment. YY1 degradation during the mitosis-to-G1-phase interval revealed a set of enhancer-promoter loops that require YY1 for establishment during G1-phase entry but not for maintenance in interphase, suggesting that cell cycle stage influences YY1's architectural function. Thus, as revealed here for YY1, chromatin architectural functions of transcription factors can vary in their interplay with CTCF and cohesin as well as by cell cycle stage.


Asunto(s)
Proteínas Cromosómicas no Histona , Cohesinas , Regiones Promotoras Genéticas , Transcripción Genética , Factor de Transcripción YY1 , Animales , Humanos , Ratones , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Elementos de Facilitación Genéticos , Células Eritroides/metabolismo , Células Eritroides/citología , Fase G1/genética , Regulación de la Expresión Génica , Mitosis/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética
4.
Mol Cell ; 81(2): 239-254.e8, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33301730

RESUMEN

Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.


Asunto(s)
ADN/genética , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Factores de Transcripción/genética , Animales , Sitios de Unión , Células COS , Sistemas CRISPR-Cas , Chlorocebus aethiops , ADN/metabolismo , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/trasplante , Sangre Fetal/citología , Sangre Fetal/metabolismo , Hemoglobina Fetal/metabolismo , Feto , Edición Génica , Células HEK293 , Xenoinjertos , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Modelos Moleculares , Células Madre Embrionarias de Ratones/citología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional
5.
iScience ; 23(5): 101103, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32416589

RESUMEN

Core regulatory transcription factors (CR TFs) establish enhancers with logical ordering during embryogenesis and development. Here we report that in fusion-positive rhabdomyosarcoma, a cancer of the muscle lineage, the chief oncogene PAX3-FOXO1 is driven by a translocated FOXO1 super enhancer (SE) restricted to a late stage of myogenesis. Using chromatin conformation capture techniques, we demonstrate that the extensive FOXO1 cis-regulatory domain interacts with PAX3. Furthermore, RNA sequencing and chromatin immunoprecipitation sequencing data in tumors bearing rare PAX translocations implicate enhancer miswiring across all fusion-positive tumors. HiChIP of H3K27ac showed connectivity between the FOXO1 SE, additional intra-domain enhancers, and the PAX3 promoter. We show that PAX3-FOXO1 transcription is diminished when this network of enhancers is ablated by CRISPR. Our data reveal a hijacked enhancer network that disrupts the stepwise CR TF logic of normal skeletal muscle development (PAX3 to MYOD to MYOG), replacing it with an "infinite loop" enhancer logic that locks rhabdomyosarcoma in an undifferentiated stage.

6.
RNA ; 25(12): 1731-1750, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31511320

RESUMEN

The primary oncogenic event in ∼85% of Ewing sarcomas is a chromosomal translocation that generates a fusion oncogene encoding an aberrant transcription factor. The exact genomic breakpoints within the translocated genes, EWSR1 and FLI1, vary; however, in EWSR1, breakpoints typically occur within introns 7 or 8. We previously found that in Ewing sarcoma cells harboring EWSR1 intron 8 breakpoints, the RNA-binding protein HNRNPH1 facilitates a splicing event that excludes EWSR1 exon 8 from the EWS-FLI1 pre-mRNA to generate an in-frame mRNA. Here, we show that the processing of distinct EWS-FLI1 pre-mRNAs by HNRNPH1, but not other homologous family members, resembles alternative splicing of transcript variants of EWSR1 We demonstrate that HNRNPH1 recruitment is driven by guanine-rich sequences within EWSR1 exon 8 that have the potential to fold into RNA G-quadruplex structures. Critically, we demonstrate that an RNA mimetic of one of these G-quadruplexes modulates HNRNPH1 binding and induces a decrease in the growth of an EWSR1 exon 8 fusion-positive Ewing sarcoma cell line. Finally, we show that EWSR1 exon 8 fusion-positive cell lines are more sensitive to treatment with the pan-quadruplex binding molecule, pyridostatin (PDS), than EWSR1 exon 8 fusion-negative lines. Also, the treatment of EWSR1 exon 8 fusion-positive cells with PDS decreases EWS-FLI1 transcriptional activity, reversing the transcriptional deregulation driven by EWS-FLI1. Our findings illustrate that modulation of the alternative splicing of EWS-FLI1 pre-mRNA is a novel strategy for future therapeutics against the EWSR1 exon 8 containing fusion oncogenes present in a third of Ewing sarcoma.


Asunto(s)
G-Cuádruplex , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Unión Proteica , ARN Mensajero/química , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...