Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 111(4): 556-574, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36494895

RESUMEN

The aim of this study was to develop a novel biodegradable magnesium (Mg) alloy for bone implant applications. We used scandium (Sc; 2 wt %) and strontium (Sr; 2 wt %) as alloying elements due to their high biocompatibility, antibacterial efficacy, osteogenesis, and protective effects against corrosion. In the present work, we also examined the effect of a heat treatment process on the properties of the Mg-Sc-Sr alloy. Alloys were manufactured using a metal casting process followed by heat treatment. The microstructure, corrosion, mechanical properties, antibacterial activity, and osteogenic activity of the alloy were assessed in vitro. The results showed that the incorporation of Sc and Sr elements controlled the corrosion, reduced the hydrogen generation, and enhanced mechanical properties. Furthermore, alloying with Sc and Sr demonstrated a significantly enhanced antibacterial activity and decreased biofilm formation compared to control Mg. Also, culturing Mg-Sc-Sr alloy with human bone marrow-derived mesenchymal stromal cells showed a high degree of biocompatibility (>90% live cells) and a significant increase in osteoblastic differentiation in vitro shown by Alizarin red staining and alkaline phosphatase activity. Based on these results, the Mg-Sc-Sr alloy heat-treated at 400°C displayed optimal mechanical properties, corrosion rate, antibacterial efficacy, and osteoinductivity. These characteristics make the Mg-Sc-Sr alloy a promising candidate for biodegradable orthopedic implants in the fixation of bone fractures such as bone plate-screws or intramedullary nails.


Asunto(s)
Magnesio , Osteogénesis , Humanos , Magnesio/química , Aleaciones/química , Corrosión , Implantes Absorbibles , Estroncio/química , Antibacterianos , Ensayo de Materiales
2.
J Funct Biomater ; 13(4)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36547521

RESUMEN

Magnesium (Mg) and its alloys are considered to be biodegradable metallic biomaterials for potential orthopedic implants. While the osteogenic properties of Mg alloys have been widely studied, few reports focused on developing a bifunctional Mg implant with osteogenic and angiogenic properties. Herein, a Mg-Sc-Sr alloy was developed, and this alloy's angiogenesis and osteogenesis effects were evaluated in vitro for the first time. X-ray Fluorescence (XRF), X-ray diffraction (XRD), and metallography images were used to evaluate the microstructure of the developed Mg-Sc-Sr alloy. Human umbilical vein/vascular endothelial cells (HUVECs) were used to evaluate the angiogenic character of the prepared Mg-Sc-Sr alloy. A mix of human bone-marrow-derived mesenchymal stromal cells (hBM-MSCs) and HUVEC cell cultures were used to assess the osteogenesis-stimulating effect of Mg-Sc-Sr alloy through alkaline phosphatase (ALP) and Von Kossa staining. Higher ALP activity and the number of calcified nodules (27% increase) were obtained for the Mg-Sc-Sr-treated groups compared to Mg-treated groups. In addition, higher VEGF expression (45.5% increase), tube length (80.8% increase), and number of meshes (37.9% increase) were observed. The Mg-Sc-Sr alloy showed significantly higher angiogenesis and osteogenic differentiation than pure Mg and the control group, suggesting such a composition as a promising candidate in bone implants.

3.
Nanomedicine ; 41: 102530, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35104672

RESUMEN

This project aimed to develop, optimize, and test an ultrasound-responsive targeted nanodroplet system for the delivery of osteoporosis-related silencing gene Cathepsin K small interfering RNA (CTSK siRNA) for osteoporosis treatment. The nanodroplet (ND) is composed of a gas core made from perfluorocarbon, stabilized with albumin, encapsulated with CTSK siRNA, and embedded with alendronate (AL) for bone targeting (CTSK siRNA-ND-AL). Following the development, the responsiveness of CTSK siRNA-ND-AL to a therapeutic ultrasound probe was examined. The results of biocompatibility tests with human bone marrow-derived mesenchymal stem cells proved no significant cell death (P > 0.05). When the CTSK siRNA-ND-AL was supplemented with human osteoclast precursors, they suppressed osteoclastogenesis. Thus, this project establishes the potential of nanotechnology and ultrasound to deliver genes into the osteoclasts. This research also presents a novel ultrasound responsive and targeted nanodroplet platform that can be used as a gene and drug delivery system for various diseases including cancer.


Asunto(s)
Osteoclastos , Osteoporosis , Técnicas de Transferencia de Gen , Humanos , Osteogénesis/genética , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...