Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
ChemSusChem ; 16(3): e202202090, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36445802

RESUMEN

Porphyrin derivatives represent an emerging class of redox-active materials for sustainable electrochemical energy storage. However, their structure-performance relationship is poorly understood, which confines their rational design and thus limits access to their full potential. To gain such understanding, we here focus on the role of the metal ion within porphyrin molecules. The A2 B2 -type porphyrin 5,15-bis(ethynyl)-10,20-diphenylporphyrin and its first-row transition metal complexes from Co to Zn are used as models to investigate the relationships between structure and electrochemical performance. It turned out that the choice of central metal atom has a profound influence on the practical voltage window and discharge capacity. The results of DFT calculations suggest that the choice of central metal atom triggers the degree of planarity of the porphyrin. Single crystal diffraction studies illustrate the consequences on the intramolecular rearrangement and packing of metalloporphyrins. Besides the direct effect of the metal choice on the undesired solubility, efficient packing and crystallinity are found to dictate the rate capability and the ion diffusion along with the porosity. Such findings open up a vast space of compositions and morphologies to accelerate the practical application of resource-friendly cathode materials to satisfy the rapidly increasing need for efficient electrical energy storage.

2.
Food Chem ; 386: 132845, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35381537

RESUMEN

In this study an electrochemical sensor was fabricated for detection of curcumin, as a functional herbal food, using molecularly imprinted polymer and highly conductive transition metal oxide/carbon-based nanocomposite. In this way, CuCo2O4/nitrogen-doped carbon nanotubes/phosphorus-doped graphene oxide nanocomposite was dropped on the electrode. This nanocomposite synergically possesses conductivity features of copper and phosphorus-doping sites, specific surface area of carbon nanotubes, and carbons Fermi level of graphene oxide. In the following, l-Cystein electropolymerized on the electrode in presence of curcumin. The sensor was produced by removing curcumin from poly (L- cystein) matrix. The sensor was successfully used for detection of curcumin in the ranges of 0.1-1 µmol L-1 and 1-30 µmol L-1, with acceptable detection limit (30 nmol L-1). Finally, the proposed method was used for detection of curcumin in serum samples with recoveries of 80-110.87%. The results demonstrated that aforementioned method can be used for detection of curcumin in biological samples.


Asunto(s)
Curcumina , Impresión Molecular , Nanocompuestos , Nanotubos de Carbono , Cisteína , Técnicas Electroquímicas/métodos , Límite de Detección , Impresión Molecular/métodos , Óxidos , Fósforo , Polímeros
3.
ChemSusChem ; 14(8): 1840-1846, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33646642

RESUMEN

Development of practical rechargeable Mg batteries (RMBs) is impeded by their limited cycle life and rate performance of cathodes. As demonstrated herein, a copper-porphyrin with meso-functionalized ethynyl groups is capable of reversible two- and four-electron storage at an extremely fast rate (tested up to 53 C). The reversible four-electron redox process with cationic-anionic contributions resulted in a specific discharge capacity of 155 mAh g-1 at the high current density of 1000 mA g-1 . Even at 4000 mA g-1 , it still delivered >70 mAh g-1 after 500 cycles, corresponding to an energy density of >92 Wh kg-1 at a high power of >5100 W kg-1 . The ability to provide such high-rate performance and long-life opens the way to the development of practical cathodes for multivalent metal batteries.

4.
Sci Rep ; 11(1): 3764, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580110

RESUMEN

Two novel types of anion exchange membranes (AEMs) having imidazolium-type functionalised nanofibrous substrates were prepared using the facile and potentially scalable method. The membranes' precursors were prepared by graft copolymerization of vinylbenzyl chloride (VBC) onto syndiotactic polypropylene (syn-PP) and polyamide-66 (PA-66) nanofibrous networks followed by crosslinking with 1,8-octanediamine, thermal treatment and subsequent functionalisation of imidazolium groups. The obtained membranes displayed an ion exchange capacity (IEC) close to 1.9 mmol g-1 and ionic (OH-) conductivity as high as 130 mS cm-1 at 80 °C. This was coupled with a reasonable alkaline stability representing more than 70% of their original conductivity under accelerated degradation test in 1 M KOH at 80 °C for 360 h. The effect of ionomer binder on the performance of the membrane electrode assembly (MEA) in AEM fuel cell was evaluated with the optimum membrane. The MEA showed a power density of as high as 440 mW cm-2 at a current density is 910 mA cm-2 with diamine crosslinked quaternized polysulfone (DAPSF) binder at 80 °C with 90% humidified H2 and O2 gases. Such performance was 2.3 folds higher than the corresponding MEA performance with quaternary ammonium polysulfone (QAPS) binder at the same operating conditions. Overall, the newly developed membrane was found to possess not only an excellent combination of physico-chemical properties and a reasonable stability but also to have a facile preparation procedure and cheap ingredients making it a promising candidate for application in AEM fuel cell.

5.
Membranes (Basel) ; 10(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297433

RESUMEN

In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers-acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process.

6.
J Cell Physiol ; 234(8): 12433-12441, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30633358

RESUMEN

BACKGROUND: Human T-lymphotropic virus Type 1 (HTLV-1) is a retrovirus that is endemic in some regions of the world. It is known to cause several diseases like adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Serology and molecular methods have been used to detect this virus. Of these, enzyme-linked immunosorbent assay (ELISA) is used as a primary screening method and this is usually followed by western blotting (WB) and polymerase chain reaction (PCR) methods as confirmatory tests. We conducted a systematic review of the different techniques used in the diagnosis of HTLV-1 infection. MATERIALS AND METHODS: Our search was limited to original papers in the English language from 2010 to 2018 using several databases including Pubmed, Scopus, Google Scholar, Iranmedex, and Scientific Information Database. A manual search of references provided in the included papers was also performed. RESULTS: Of 101 electronically searched citations, 43 met the inclusion criteria. ELISA is commonly used for qualitative and screening detection, and WB and PCR techniques are used to confirm infection. CONCLUSION: Among all the reported methods for detection of HTLV-1, only serological and molecular tests are used as the most common technical assays for HTLV-1. The ELISA assay, without a confirmatory test, has several limitations and affect the accuracy of the results. Owing to the prevalence of HTLV-1 and limitations of the current detection methods, further evaluation of the accuracy of these methods is needed. There are new opportunities for applying novel technological advances in microfluidics, biosensors, and lab-on-a-chip systems to perform HTLV-1 diagnostics.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano/aislamiento & purificación , Leucemia-Linfoma de Células T del Adulto/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Paraparesia Espástica Tropical/diagnóstico , Técnicas Biosensibles/métodos , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Humanos , Leucemia-Linfoma de Células T del Adulto/patología , Leucemia-Linfoma de Células T del Adulto/virología , Paraparesia Espástica Tropical/patología , Paraparesia Espástica Tropical/virología , Reacción en Cadena de la Polimerasa
7.
Nanoscale ; 10(27): 13212-13222, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-29971298

RESUMEN

A novel polyoxometalate-based electrode was developed by incorporating phosphotungstic acid (PWA) in nylon-6,6 nanofiber, followed by carbonization. The developed PWA-carbon nanofiber (PWA-CNF) showed the characteristics of the dual-scale porosity of micro- and mesoporous substrate with surface area of around 684 m2 g-1. The compound exhibited excellent stability in vanadium electrolyte and battery cycling. Evaluation of electrocatalytic properties toward V2+/V3+ and VO2+/VO2+ redox couples indicated promising advantages in electron transfer kinetics and increasing energy efficiency, particularly for the VO2+/VO2+ couple. Moreover, the developed electrode exhibited substantially improved energy efficiency (14% higher than that of pristine carbon felt) in the single cell vanadium redox flow battery. This outstanding performance was attributed to high surface area and abundant oxygen-containing linkages in the developed electrode.

8.
Water Sci Technol ; 77(5-6): 1493-1504, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29595152

RESUMEN

The global attention has been focused on degradation of the environmental organic pollutants through green methods such as advanced oxidation processes (AOPs) under sunlight. However, AOPs have not yet been efficient in function of the photocatalyst that has been used. In this work, firstly, CaCu3Ti4O12 nanocomposite was simultaneously synthesized and decorated in different amounts of graphene oxide to enhance photodegradation of the organics. The result of the photocatalyst characterization showed that the sample with 8% graphene presented optimum photo-electrical properties such as low band gap energy and a great surface area. Secondly, the photocatalyst was applied for photodegradation of an organic model in a batch photoreactor. Thirdly, to scale up the process and optimize the efficiency, the photodegradation was modeled by multivariate semi-empirical methods. As the optimized condition showed, 45 mg/L of the methyl-orange has been removed at pH 5.8 by 0.96 g/L of the photocatalyst during 288 min of the light irradiation. Moreover, the photodegradation has been scaled up for industrial applications by determining the importance of the input effective variables according to the following organics order > photocatalyst > pH > irradiation time.


Asunto(s)
Nanocompuestos/química , Fotólisis , Luz Solar , Contaminantes Químicos del Agua/química , Compuestos Azo/química , Grafito/química , Oxidación-Reducción , Óxidos/química , Eliminación de Residuos Líquidos , Agua
9.
Curr Pharm Des ; 24(39): 4675-4680, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30636591

RESUMEN

Small noncoding microRNAs (miRNAs) are known as noninvasive biomarkers for early detection in various cancers. In fact, miRNAs have key roles in carcinogenicity process such as proliferation, apoptosis and metastasis. After cardiovascular disease, cancer is the second cause of death in the world with an estimated 9.6 million deaths in 2018. So, early diagnosis of cancer is critical for successful treatment. To date, several selective and sensitive laboratory-based methods have been applied for the detection of circulating miRNA, but a simple, short assay time and low-cost method such as a biosensor method as an alternative approach to monitor cancer biomarker is required. In this review, we have highlighted recent advances in biosensors for circulating miRNA detection.


Asunto(s)
Biomarcadores de Tumor/sangre , Detección Precoz del Cáncer , MicroARNs/sangre , Neoplasias/diagnóstico , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Humanos , Neoplasias/sangre
10.
Environ Sci Pollut Res Int ; 22(24): 19434-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26514567

RESUMEN

Dioxin-like compounds (DLCs) have been classified by the World Health Organization (WHO) as one of the most persistent toxic chemical substances in the environment, and they are associated with several occupational activities and industrial accidents around the world. Since the end of the 1970s, these toxic chemicals have been banned because of their human toxicity potential, long half-life, wide dispersion, and they bioaccumulate in the food web. This review serves as a primer for environmental health professionals to provide guidance on short-term risk assessment of dioxin and to identify key findings for health and exposure assessment based on policies of different agencies. It also presents possible health effects of dioxins, mechanisms of action, toxic equivalency factors (TEFs), and dose-response characterization. Key studies related to toxicity values of dioxin-like compounds and their possible human health risk were identified through PubMed and supplemented with relevant studies characterized by reviewing the reference lists in the review articles and primary literature. Existing data decreases the scope of analyses and models in relevant studies to a manageable size by focusing on the set of important studies related to the perspective of developing toxicity values of DLCs.


Asunto(s)
Dioxinas/toxicidad , Animales , Dioxinas/química , Exposición a Riesgos Ambientales , Humanos , Modelos Animales , Ratas , Medición de Riesgo
11.
ACS Appl Mater Interfaces ; 7(31): 17008-15, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26196374

RESUMEN

High level of phosphotungstic acid (PWA) was self-immobilized on electrospun nylon nanofiberous sheet to fabricate highly selective methanol barrier layer for sandwich structured proton conducting membranes. Simple tuning for the assembly conditions of central layer and thickness of outer Nafion layers allowed obtaining different composite membranes with superior methanol barrier properties (namely, P=3.59×10(-8) cm2 s(-1)) coupled with proton conductivities reaching 58.6 mS cm(-1) at 30 °C. Comparable activation energy for proton transport and more than 20 times higher selectivity than Nafion 115 confirm the effectiveness of the central layer and resulting membranes for application in direct methanol fuel cells (DMFCs). When tested in DMFC single cell, the performance of hybrid membrane was far better than Nafion 115 especially at higher methanol concentrations.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 150: 892-901, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26119355

RESUMEN

It is believe that 80% industrial of carbon dioxide can be controlled by separation and storage technologies which use the blended ionic liquids absorber. Among the blended absorbers, the mixture of water, N-methyldiethanolamine (MDEA) and guanidinium trifluoromethane sulfonate (gua) has presented the superior stripping qualities. However, the blended solution has illustrated high viscosity that affects the cost of separation process. In this work, the blended fabrication was scheduled with is the process arranging, controlling and optimizing. Therefore, the blend's components and operating temperature were modeled and optimized as input effective variables to minimize its viscosity as the final output by using back-propagation artificial neural network (ANN). The modeling was carried out by four mathematical algorithms with individual experimental design to obtain the optimum topology using root mean squared error (RMSE), R-squared (R(2)) and absolute average deviation (AAD). As a result, the final model (QP-4-8-1) with minimum RMSE and AAD as well as the highest R(2) was selected to navigate the fabrication of the blended solution. Therefore, the model was applied to obtain the optimum initial level of the input variables which were included temperature 303-323 K, x[gua], 0-0.033, x[MDAE], 0.3-0.4, and x[H2O], 0.7-1.0. Moreover, the model has obtained the relative importance ordered of the variables which included x[gua]>temperature>x[MDEA]>x[H2O]. Therefore, none of the variables was negligible in the fabrication. Furthermore, the model predicted the optimum points of the variables to minimize the viscosity which was validated by further experiments. The validated results confirmed the model schedulability. Accordingly, ANN succeeds to model the initial components of the blended solutions as absorber of CO2 capture in separation technologies that is able to industries scale up.

13.
Environ Sci Pollut Res Int ; 22(15): 11193-208, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25953606

RESUMEN

Current ecological risk assessment (ERA) schemes focus mainly on bioaccumulation and toxicity of pollutants in individual organisms. Ecological models are tools mainly used to assess ecological risks of pollutants to ecosystems, communities, and populations. Their main advantage is the relatively direct integration of the species sensitivity to organic pollutants, the fate and mechanism of action in the environment of toxicants, and life-history features of the individual organism of concern. To promote scientific consensus on ERA schemes, this review is intended to provide a guideline on short-term ERA involving dioxin chemicals and to identify key findings for exposure assessment based on policies of different agencies. It also presents possible adverse effects of dioxins on ecosystems, toxicity equivalence methodology, environmental fate and transport modeling, and development of stressor-response profiles for dioxin-like chemicals.


Asunto(s)
Dioxinas/toxicidad , Ecotoxicología/métodos , Contaminantes Ambientales/toxicidad , Medición de Riesgo/métodos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...