Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 820: 153194, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35063516

RESUMEN

Woodchip denitrification walls offer a potentially useful way for passive in situ remediation of groundwater nitrate pollution, yet because of the low redox state they induce on the subsurface environment there is an inherent risk they can promote pollution-swapping phenomena. We evaluated pollution-swapping phenomena associated with the first two operational years of a woodchip denitrification wall that is being trialled in a fast-flowing shallow gravel aquifer of quartzo-feldspathic mineralogy. Following burial of woodchip below the water table there was immediate export of dissolved organic carbon (DOC), phosphorus and ammonium into the groundwater. Under the low redox state sustained by labile DOC, the wall initially provided 100% nitrate removal at the expense of acute and localised pollution that occurred in the form of a plume of dissolved iron, manganese and arsenic that were mobilised from the aquifer sediments, in conjunction with methane gas emission. Within one year however, the reactivity of the woodchip wall subsided to support a steady state condition in which nitrate reduction was the terminal electron acceptor process with no measurable methane emission. Having initially functioned as a sink for the potent greenhouse gas nitrous oxide (N2O), evidence is that the woodchip wall is now exporting N2O, albeit at rates less than those associated with productive agricultural land.


Asunto(s)
Compuestos de Amonio , Agua Subterránea , Desnitrificación , Nitratos , Óxido Nitroso
2.
Environ Monit Assess ; 193(5): 303, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33900460

RESUMEN

Examples of the utility of UV optical nitrate sensors are provided for two field applications, investigating nitrate pollution in a lowland, peri-urban catchment. In one application, rapid, in-stream longitudinal nitrate surveys were made in summer and winter, by fixing an optical nitrate sensor operating in continuous measurement mode to a kayak that was paddled along 10 km of the mainstem of the low-order stream in under 4 h. Nitrate concentrations ranged between 3.45 and 6.39 mg NO3-N/L. Nitrate hot-spots and cool-spots were mapped and found to relate to point discharges from spring-fed tributaries and land drains. Effective nitrate removal (dN/dx = - 0.08 mg N/L/km), inferred to be from assimilation reactions, was evident in the summer dataset, but not the winter nitrate dataset. In a second application, the optical sensor was configured with appropriate technology to establish an autonomous and fully automated nitrate monitoring station. The station makes daily nitrate measurements of surface water, and groundwater, sampled from a cluster of four multi-level wells. Quarterly maintenance of the nitrate sensor has proven sufficient to keep measurement errors under 5%. Most nitrate variation has been recorded at or near the water table where concentrations have ranged between 3.47 and 5.88 mg NO3-N/L, and annual maxima have occurred in late winter/spring, which coincides with when most nitrate leaching occurs from agricultural land. Seasonal nitrate patterns are not evident in groundwater sampled from 8-m depth, or deeper. High-frequency monitoring has revealed that some infra-season, short-term variability also occurs in shallow groundwater nitrate, driven by storm events, and which on occasion results in a temporary inversion of the groundwater nitrate-depth profile.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Agricultura , Monitoreo del Ambiente , Nitratos/análisis , Agua , Contaminantes Químicos del Agua/análisis
3.
Ground Water ; 58(6): 901-912, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32017061

RESUMEN

The vast majority of microorganisms in aquifers live as biofilms on sediment surfaces, which presents significant challenges for sampling as only the suspended microbes will be sampled through normal pumping. The use of a down-well low frequency sonicator has been suggested as a method of detaching microbes from the biofilm and allowing rapid sampling of this community. We developed a portable, easy to use, low-frequency electric sonicator and evaluated its performance for a range of well depths (tested up to 42 m below ground level) and casing types. Three sonicators were characterized in laboratory experiments using a 1 m long tank filled with pea gravel. These included a commercially available pneumatic sonicator, a rotating flexible shaft sonicator, and the prototype electric sonicator. The electric sonicator detached between 56 and 74% of microbes grown on gravel-containing biobags at distances ranging between 2 and 50 cm from the sonicator. The field testing comprises of a total of 55 sampling events from 48 wells located in 4 regions throughout New Zealand. Pre- and post-sonication samples showed an average 33 times increase in bacterial counts. Microbial sequence data showed that the same classes are present in pre- and post-sonicated samples and only slight differences were seen in the proportions present. The sampling process was rapid and the significant increases in bacterial counts mean that microbial samples can be quickly obtained from wells, which permits more detailed analysis than previously possible.


Asunto(s)
Agua Subterránea , Nueva Zelanda , Sonicación , Pozos de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...