Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Med Chem ; 66(14): 9954-9971, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37436942

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathway─an active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases. We have developed potent, selective, brain penetrant DLK inhibitors with excellent PK and activity in mouse models of CIPN. Lead compound IACS-52825 (22) showed strongly effective reversal of mechanical allodynia in a mouse model of CIPN and was advanced into preclinical development.


Asunto(s)
Antineoplásicos , Enfermedades del Sistema Nervioso Periférico , Ratones , Animales , Neuronas , Sistema de Señalización de MAP Quinasas , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Antineoplásicos/efectos adversos , Quinasas Quinasa Quinasa PAM
2.
Neurobiol Dis ; 173: 105835, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35932989

RESUMEN

Therapies for epilepsy mainly provide symptomatic control of seizures since most of the available drugs do not target disease mechanisms. Moreover, about one-third of patients fail to achieve seizure control. To address the clinical need for disease-modifying therapies, research should focus on targets which permit interventions finely balanced between optimal efficacy and safety. One potential candidate is the brain-specific enzyme cholesterol 24-hydroxylase. This enzyme converts cholesterol to 24S-hydroxycholesterol, a metabolite which among its biological roles modulates neuronal functions relevant for hyperexcitability underlying seizures. To study the role of cholesterol 24-hydroxylase in epileptogenesis, we administered soticlestat (TAK-935/OV935), a potent and selective brain-penetrant inhibitor of the enzyme, during the early disease phase in a mouse model of acquired epilepsy using a clinically relevant dose. During soticlestat treatment, the onset of epilepsy was delayed and the number of ensuing seizures was decreased by about 3-fold compared to vehicle-treated mice, as assessed by EEG monitoring. Notably, the therapeutic effect was maintained 6.5 weeks after drug wash-out when seizure number was reduced by about 4-fold and their duration by 2-fold. Soticlestat-treated mice showed neuroprotection of hippocampal CA1 neurons and hilar mossy cells as assessed by post-mortem brain histology. High throughput RNA-sequencing of hippocampal neurons and glia in mice treated with soticlestat during epileptogenesis showed that inhibition of cholesterol 24-hydroxylase did not directly affect the epileptogenic transcriptional network, but rather modulated a non-overlapping set of genes that might oppose the pathogenic mechanisms of the disease. In human temporal lobe epileptic foci, we determined that cholesterol 24-hydroxylase expression trends higher in neurons, similarly to epileptic mice, while the enzyme is ectopically induced in astrocytes compared to control specimens. Soticlestat reduced significantly the number of spontaneous seizures in chronic epileptic mice when was administered during established epilepsy. Data show that cholesterol 24-hydroxylase contributes to spontaneous seizures and is involved in disease progression, thus it represents a novel target for chronic seizures inhibition and disease-modification therapy in epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Colesterol/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Piperidinas , Piridinas , ARN/metabolismo , Convulsiones/metabolismo
3.
Epilepsia ; 62(11): 2845-2857, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510432

RESUMEN

OBJECTIVE: Dravet syndrome is a severe developmental and epileptic encephalopathy (DEE) most often caused by de novo pathogenic variants in SCN1A. Individuals with Dravet syndrome rarely achieve seizure control and have significantly elevated risk for sudden unexplained death in epilepsy (SUDEP). Heterozygous deletion of Scn1a in mice (Scn1a+/- ) recapitulates several core phenotypes, including temperature-dependent and spontaneous seizures, SUDEP, and behavioral abnormalities. Furthermore, Scn1a+/- mice exhibit a similar clinical response to standard anticonvulsants. Cholesterol 24-hydroxlase (CH24H) is a brain-specific enzyme responsible for cholesterol catabolism. Recent research has indicated the therapeutic potential of CH24H inhibition for diseases associated with neural excitation, including seizures. METHODS: In this study, the novel compound soticlestat, a CH24H inhibitor, was administered to Scn1a+/- mice to investigate its ability to improve Dravet-like phenotypes in this preclinical model. RESULTS: Soticlestat treatment reduced seizure burden, protected against hyperthermia-induced seizures, and completely prevented SUDEP in Scn1a+/- mice. Video-electroencephalography (EEG) analysis confirmed the ability of soticlestat to reduce occurrence of electroclinical seizures. SIGNIFICANCE: This study demonstrates that soticlestat-mediated inhibition of CH24H provides therapeutic benefit for the treatment of Dravet syndrome in mice and has the potential for treatment of DEEs.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Piperidinas , Piridinas , Convulsiones Febriles , Muerte Súbita e Inesperada en la Epilepsia , Animales , Colesterol 24-Hidroxilasa/antagonistas & inhibidores , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Epilepsia/genética , Síndromes Epilépticos , Ratones , Mortalidad Prematura , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/genética , Piperidinas/farmacología , Piridinas/farmacología , Convulsiones/etiología , Convulsiones/genética , Convulsiones Febriles/tratamiento farmacológico , Muerte Súbita e Inesperada en la Epilepsia/etiología
4.
Cell ; 180(6): 1178-1197.e20, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32200800

RESUMEN

Social impairment is frequently associated with mitochondrial dysfunction and altered neurotransmission. Although mitochondrial function is crucial for brain homeostasis, it remains unknown whether mitochondrial disruption contributes to social behavioral deficits. Here, we show that Drosophila mutants in the homolog of the human CYFIP1, a gene linked to autism and schizophrenia, exhibit mitochondrial hyperactivity and altered group behavior. We identify the regulation of GABA availability by mitochondrial activity as a biologically relevant mechanism and demonstrate its contribution to social behavior. Specifically, increased mitochondrial activity causes gamma aminobutyric acid (GABA) sequestration in the mitochondria, reducing GABAergic signaling and resulting in social deficits. Pharmacological and genetic manipulation of mitochondrial activity or GABA signaling corrects the observed abnormalities. We identify Aralar as the mitochondrial transporter that sequesters GABA upon increased mitochondrial activity. This study increases our understanding of how mitochondria modulate neuronal homeostasis and social behavior under physiopathological conditions.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Ácido Aspártico/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Glucosa/metabolismo , Homeostasis , Humanos , Masculino , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Conducta Social , Transmisión Sináptica , Ácido gamma-Aminobutírico/genética
5.
Front Behav Neurosci ; 13: 141, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293404

RESUMEN

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and autism. FXS is also accompanied by attention problems, hyperactivity, anxiety, aggression, poor sleep, repetitive behaviors, and self-injury. Recent work supports the role of γ-aminobutyric-acid (GABA), the primary inhibitory neurotransmitter in the brain, in mediating symptoms of FXS. Deficits in GABA machinery have been observed in a mouse model of FXS, including a loss of tonic inhibition in the amygdala, which is mediated by extrasynaptic GABAA receptors. Humans with FXS also show reduced GABAA receptor availability. Here, we sought to evaluate the potential of gaboxadol (also called OV101 and THIP), a selective and potent agonist for delta-subunit-containing extrasynaptic GABAA receptors (dSEGA), as a therapeutic agent for FXS by assessing its ability to normalize aberrant behaviors in a relatively uncharacterized mouse model of FXS (Fmr1 KO2 mice). Four behavioral domains (hyperactivity, anxiety, aggression, and repetitive behaviors) were probed using a battery of behavioral assays. The results showed that Fmr1 KO2 mice were hyperactive, had abnormal anxiety-like behavior, were more irritable and aggressive, and had an increased frequency of repetitive behaviors compared to wild-type (WT) littermates, which are all behavioral deficits reminiscent of individuals with FXS. Treatment with gaboxadol normalized all of the aberrant behaviors observed in Fmr1 KO2 mice back to WT levels, providing evidence of its potential benefit for treating FXS. We show that the potentiation of extrasynaptic GABA receptors alone, by gaboxadol, is sufficient to normalize numerous behavioral deficits in the FXS model using endpoints that are directly translatable to the clinical presentation of FXS. Taken together, these data support the future evaluation of gaboxadol in individuals with FXS, particularly with regard to symptoms of hyperactivity, anxiety, irritability, aggression, and repetitive behaviors.

6.
Biol Psychiatry ; 86(4): 306-314, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31202490

RESUMEN

BACKGROUND: Deletions encompassing a four-gene region on chromosome 15 (BP1-BP2 at 15q11.2), seen at a population frequency of 1 in 500, are associated with increased risk for schizophrenia, epilepsy, and other common neurodevelopmental disorders. However, little is known in terms of how these common deletions impact cognition. METHODS: We used a Web-based tool to characterize cognitive function in a novel cohort of adult carriers and their noncarrier family members. Results from 31 carrier and 38 noncarrier parents from 40 families were compared with control data from 6530 individuals who self-registered on the Lumosity platform and opted in to participate in research. We then examined aspects of sensory and cognitive function in flies harboring a mutation in Cyfip, the homologue of one of the genes within the deletion. For the fly studies, 10 or more groups of 50 individuals per genotype were included. RESULTS: Our human studies revealed profound deficits in grammatical reasoning, arithmetic reasoning, and working memory in BP1-BP2 deletion carriers. No such deficits were observed in noncarrier spouses. Our fly studies revealed deficits in associative and nonassociative learning despite intact sensory perception. CONCLUSIONS: Our results provide new insights into outcomes associated with BP1-BP2 deletions and call for a discussion on how to appropriately communicate these findings to unaffected carriers. Findings also highlight the utility of an online tool in characterizing cognitive function in a geographically distributed population.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Disfunción Cognitiva/genética , Proteínas de Drosophila/genética , Drosophila/genética , Trastornos del Neurodesarrollo/genética , Adulto , Animales , Aberraciones Cromosómicas , Cromosomas Humanos Par 15/genética , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo
7.
Brain Lang ; 174: 50-60, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28738218

RESUMEN

Three lines of evidence motivated this study. 1) CNTNAP2 variation is associated with autism risk and speech-language development. 2) CNTNAP2 variations are associated with differences in white matter (WM) tracts comprising the speech-language circuitry. 3) Children with autism show impairment in multisensory speech perception. Here, we asked whether an autism risk-associated CNTNAP2 single nucleotide polymorphism in neurotypical adults was associated with multisensory speech perception performance, and whether such a genotype-phenotype association was mediated through white matter tract integrity in speech-language circuitry. Risk genotype at rs7794745 was associated with decreased benefit from visual speech and lower fractional anisotropy (FA) in several WM tracts (right precentral gyrus, left anterior corona radiata, right retrolenticular internal capsule). These structural connectivity differences were found to mediate the effect of genotype on audiovisual speech perception, shedding light on possible pathogenic pathways in autism and biological sources of inter-individual variation in audiovisual speech processing in neurotypicals.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Encéfalo/patología , Encéfalo/fisiopatología , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Vías Nerviosas , Percepción del Habla/genética , Habla , Estimulación Acústica , Adulto , Anisotropía , Femenino , Humanos , Desarrollo del Lenguaje , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Polimorfismo de Nucleótido Simple , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología , Adulto Joven
8.
PLoS One ; 11(6): e0158036, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27351196

RESUMEN

Copy number variants (CNVs) at the Breakpoint 1 to Breakpoint 2 region at 15q11.2 (BP1-2) are associated with language-related difficulties and increased risk for developmental disorders in which language is compromised. Towards underlying mechanisms, we investigated relationships between single nucleotide polymorphisms (SNPs) across the region and quantitative measures of human brain structure obtained by magnetic resonance imaging of healthy subjects. We report an association between rs4778298, a common variant at CYFIP1, and inter-individual variation in surface area across the left supramarginal gyrus (lh.SMG), a cortical structure implicated in speech and language in independent discovery (n = 100) and validation cohorts (n = 2621). In silico analyses determined that this same variant, and others nearby, is also associated with differences in levels of CYFIP1 mRNA in human brain. One of these nearby polymorphisms is predicted to disrupt a consensus binding site for FOXP2, a transcription factor implicated in speech and language. Consistent with a model where FOXP2 regulates CYFIP1 levels and in turn influences lh.SMG surface area, analysis of publically available expression data identified a relationship between expression of FOXP2 and CYFIP1 mRNA in human brain. We propose that altered CYFIP1 dosage, through aberrant patterning of the lh.SMG, may contribute to language-related difficulties associated with BP1-2 CNVs. More generally, this approach may be useful in clarifying the contribution of individual genes at CNV risk loci.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cromosomas Humanos Par 15/genética , Variaciones en el Número de Copia de ADN , Lóbulo Parietal/diagnóstico por imagen , Habla , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Estudios de Casos y Controles , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Sitios Genéticos , Humanos , Desarrollo del Lenguaje , Lóbulo Parietal/metabolismo , Lóbulo Parietal/fisiología
9.
PLoS One ; 11(1): e0148039, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26824476

RESUMEN

Deletions encompassing the BP1-2 region at 15q11.2 increase schizophrenia and epilepsy risk, but only some carriers have either disorder. To investigate the role of CYFIP1, a gene within the region, we performed knockdown experiments in human neural progenitors derived from donors with 2 copies of each gene at the BP1-2 locus. RNA-seq and cellular assays determined that knockdown of CYFIP1 compromised cytoskeletal remodeling. FMRP targets and postsynaptic density genes, each implicated in schizophrenia, were significantly overrepresented among differentially expressed genes (DEGs). Schizophrenia and/or epilepsy genes, but not those associated with randomly selected disorders, were likewise significantly overrepresented. Mirroring the variable expressivity seen in deletion carriers, marked between-line differences were observed for dysregulation of disease genes. Finally, a subset of DEGs showed a striking similarity to known epilepsy genes and represents novel disease candidates. Results support a role for CYFIP1 in disease and demonstrate that disease-related biological signatures are apparent prior to neuronal differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Bases , Epilepsia/genética , Redes Reguladoras de Genes , Esquizofrenia/genética , Eliminación de Secuencia , Adulto , Cromosomas Humanos Par 15 , Epilepsia/metabolismo , Epilepsia/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Sitios Genéticos , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Cultivo Primario de Células , Riesgo , Esquizofrenia/metabolismo , Esquizofrenia/patología
10.
PLoS One ; 10(6): e0129270, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26076356

RESUMEN

Microcephaly and macrocephaly are overrepresented in individuals with autism and are thought to be disease-related risk factors or endophenotypes. Analysis of DNA microarray results from a family with a low functioning autistic child determined that the proband and two additional unaffected family members who carry a rare inherited 760 kb duplication of unknown clinical significance at 19p13.12 are macrocephalic. Consideration alongside overlapping deletion and duplication events in the literature provides support for a strong relationship between gene dosage at this locus and head size, with losses and gains associated with microcephaly (p=1.11x10(-11)) and macrocephaly (p=2.47x10(-11)), respectively. Data support A kinase anchor protein 8 and 8-like (AKAP8 and AKAP8L) as candidate genes involved in regulation of head growth, an interesting finding given previous work implicating the AKAP gene family in autism. Towards determination of which of AKAP8 and AKAP8L may be involved in the modulation of head size and risk for disease, we analyzed exome sequencing data for 693 autism families (2591 individuals) where head circumference data were available. No predicted loss of function variants were observed, precluding insights into relationship to head size, but highlighting strong evolutionary conservation. Taken together, findings support the idea that gene dosage at 19p13.12, and AKAP8 and/or AKAP8L in particular, play an important role in modulation of head size and may contribute to autism risk. Exome sequencing of the family also identified a rare inherited variant predicted to disrupt splicing of TPTE / PTEN2, a PTEN homologue, which may likewise contribute to both macrocephaly and autism risk.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Trastorno Autístico/genética , Cromosomas Humanos Par 19 , Proteínas de Unión al ADN/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Megalencefalia/genética , Microcefalia/genética , Proteínas Nucleares/genética , Trastorno Autístico/complicaciones , Trastorno Autístico/patología , Preescolar , Análisis Mutacional de ADN , Exoma , Dosificación de Gen , Duplicación de Gen , Humanos , Masculino , Megalencefalia/complicaciones , Microcefalia/complicaciones , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Factores de Riesgo
11.
PLoS Genet ; 10(5): e1004402, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24875834

RESUMEN

DNA mutational events are increasingly being identified in autism spectrum disorder (ASD), but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA) is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD) controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement and interact with DNA mutations in the pathogenesis of the disorder.


Asunto(s)
Factores de Edad , Trastornos Generalizados del Desarrollo Infantil/genética , Metilación de ADN/genética , Epigénesis Genética , Mosaicismo , Adulto , Trastornos Generalizados del Desarrollo Infantil/patología , Aberraciones Cromosómicas , Femenino , Perfilación de la Expresión Génica , Genoma Humano , Haplotipos , Humanos , Masculino , Relaciones Materno-Fetales , Persona de Mediana Edad , Embarazo
12.
Mol Autism ; 4(1): 36, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24090431

RESUMEN

New technologies enabling genome-wide interrogation have led to a large and rapidly growing number of autism spectrum disorder (ASD) candidate genes. Although encouraging, the volume and complexity of these data make it challenging for scientists, particularly non-geneticists, to comprehensively evaluate available evidence for individual genes. Described here is the Gene Scoring module within SFARI Gene 2.0 (https://gene.sfari.org/autdb/GS_Home.do), a platform developed to enable systematic community driven assessment of genetic evidence for individual genes with regard to ASD.

13.
J Neurosci ; 33(7): 2732-53, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407934

RESUMEN

The immense molecular diversity of neurons challenges our ability to understand the genetic and cellular etiology of neuropsychiatric disorders. Leveraging knowledge from neurobiology may help parse the genetic complexity: identifying genes important for a circuit that mediates a particular symptom of a disease may help identify polymorphisms that contribute to risk for the disease as a whole. The serotonergic system has long been suspected in disorders that have symptoms of repetitive behaviors and resistance to change, including autism. We generated a bacTRAP mouse line to permit translational profiling of serotonergic neurons. From this, we identified several thousand serotonergic-cell expressed transcripts, of which 174 were highly enriched, including all known markers of these cells. Analysis of common variants near the corresponding genes in the AGRE collection implicated the RNA binding protein CELF6 in autism risk. Screening for rare variants in CELF6 identified an inherited premature stop codon in one of the probands. Subsequent disruption of Celf6 in mice resulted in animals exhibiting resistance to change and decreased ultrasonic vocalization as well as abnormal levels of serotonin in the brain. This work provides a reproducible and accurate method to profile serotonergic neurons under a variety of conditions and suggests a novel paradigm for gaining information on the etiology of psychiatric disorders.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/psicología , Perfilación de la Expresión Génica/métodos , Modificación Traduccional de las Proteínas/genética , Modificación Traduccional de las Proteínas/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Neuronas Serotoninérgicas/fisiología , Serotonina/fisiología , Animales , Conducta Animal/fisiología , Proteínas CELF , Estudio de Asociación del Genoma Completo , Humanos , Inmunohistoquímica , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Mutación/genética , Mutación/fisiología , Neurotransmisores/metabolismo , Polimorfismo Genético , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Ribosomas/genética , Ribosomas/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Olfato/fisiología , Conducta Social , Vocalización Animal/fisiología
14.
Hum Mol Genet ; 21(21): 4761-73, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22872700

RESUMEN

Although genetic variations in several genes encoding for synaptic adhesion proteins have been found to be associated with autism spectrum disorders, one of the most consistently replicated genes has been CNTNAP2, encoding for contactin-associated protein-like 2 (CASPR2), a multidomain transmembrane protein of the neurexin superfamily. Using immunofluorescence confocal microscopy and complementary biochemical techniques, we compared wild-type CASPR2 to 12 point mutations identified in individuals with autism. In contrast to the wild-type protein, localized to the cell surface, some of the mutants show altered cellular disposition. In particular, CASPR2-D1129H is largely retained in the endoplasmic reticulum (ER) in HEK-293 cells and in hippocampal neurons. BiP/Grp78, Calnexin and ERp57, key ER chaperones, appear to be responsible for retention of this mutant and activation of one signaling pathway of the unfolded protein response (UPR). The presence of this mutation also lowers expression and activates proteosomal degradation. A frame-shift mutation that causes a form of syndromic epilepsy (CASPR2-1253*), results in a secreted protein with seemingly normal folding and oligomerization. Taken together, these data indicate that CASPR2-D1129H has severe trafficking abnormalities and CASPR2-1253* is a secreted soluble protein, suggesting that the structural or signaling functions of the membrane tethered form are lost. Our data support a complex genetic architecture in which multiple distinct risk factors interact with others to shape autism risk and presentation.


Asunto(s)
Factor de Transcripción Activador 6 , Trastornos Generalizados del Desarrollo Infantil/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Mutación Puntual , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Niño , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Regulación de la Expresión Génica , Células HEK293 , Hipocampo/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Pliegue de Proteína , Transporte de Proteínas/genética , Transducción de Señal , Respuesta de Proteína Desplegada/genética
15.
Hum Genet ; 131(4): 565-79, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21996756

RESUMEN

Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Haplotipos/genética , Adulto , Niño , Análisis por Conglomerados , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Femenino , Genotipo , Homocigoto , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Núcleo Familiar , Polimorfismo de Nucleótido Simple
16.
Cell ; 147(1): 235-46, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962519

RESUMEN

Although many genes predisposing to autism spectrum disorders (ASD) have been identified, the biological mechanism(s) remain unclear. Mouse models based on human disease-causing mutations provide the potential for understanding gene function and novel treatment development. Here, we characterize a mouse knockout of the Cntnap2 gene, which is strongly associated with ASD and allied neurodevelopmental disorders. Cntnap2(-/-) mice show deficits in the three core ASD behavioral domains, as well as hyperactivity and epileptic seizures, as have been reported in humans with CNTNAP2 mutations. Neuropathological and physiological analyses of these mice before the onset of seizures reveal neuronal migration abnormalities, reduced number of interneurons, and abnormal neuronal network activity. In addition, treatment with the FDA-approved drug risperidone ameliorates the targeted repetitive behaviors in the mutant mice. These data demonstrate a functional role for CNTNAP2 in brain development and provide a new tool for mechanistic and therapeutic research in ASD.


Asunto(s)
Trastorno Autístico/genética , Encéfalo/crecimiento & desarrollo , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Animales , Trastorno Autístico/patología , Encéfalo/metabolismo , Encéfalo/patología , Movimiento Celular , Epilepsia/genética , Humanos , Interneuronas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones Noqueados , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/patología
17.
Sci Transl Med ; 2(56): 56ra80, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21048216

RESUMEN

Genetic studies are rapidly identifying variants that shape risk for disorders of human cognition, but the question of how such variants predispose to neuropsychiatric disease remains. Noninvasive human brain imaging allows assessment of the brain in vivo, and the combination of genetics and imaging phenotypes remains one of the only ways to explore functional genotype-phenotype associations in human brain. Common variants in contactin-associated protein-like 2 (CNTNAP2), a neurexin superfamily member, have been associated with several allied neurodevelopmental disorders, including autism and specific language impairment, and CNTNAP2 is highly expressed in frontal lobe circuits in the developing human brain. Using functional neuroimaging, we have demonstrated a relationship between frontal lobar connectivity and common genetic variants in CNTNAP2. These data provide a mechanistic link between specific genetic risk for neurodevelopmental disorders and empirical data implicating dysfunction of long-range connections within the frontal lobe in autism. The convergence between genetic findings and cognitive-behavioral models of autism provides evidence that genetic variation at CNTNAP2 predisposes to diseases such as autism in part through modulation of frontal lobe connectivity.


Asunto(s)
Trastorno Autístico/genética , Lóbulo Frontal/patología , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Trastorno Autístico/patología , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas , Factores de Riesgo
18.
Hum Mol Genet ; 19(20): 4072-82, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20663923

RESUMEN

Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.


Asunto(s)
Trastorno Autístico/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Alelos , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Variación Genética , Genoma Humano , Genotipo , Humanos , Factores de Riesgo , Población Blanca/genética
19.
Nature ; 466(7304): 368-72, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20531469

RESUMEN

The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen/genética , Predisposición Genética a la Enfermedad/genética , Estudios de Casos y Controles , Movimiento Celular , Niño , Trastornos Generalizados del Desarrollo Infantil/patología , Citoprotección , Europa (Continente)/etnología , Estudio de Asociación del Genoma Completo , Humanos , Transducción de Señal , Conducta Social
20.
J Comp Neurol ; 518(11): 1995-2018, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20394055

RESUMEN

Multiple studies, involving distinct clinical populations, implicate contactin associated protein-like 2 (CNTNAP2) in aspects of language development and performance. While CNTNAP2 is broadly distributed in developing rodent brain, it shows a striking gradient of frontal cortical enrichment in developing human brain, consistent with a role in patterning circuits that subserve higher cognition and language. To test the hypothesis that CNTNAP2 may be important for learned vocal communication in additional species, we employed in situ hybridization to characterize transcript distribution in the zebra finch, an experimentally tractable songbird for which the neural substrate of this behavior is well established. Consistent with an important role in learned vocalization, Cntnap2 was enriched or diminished in key song control nuclei relative to adjacent brain tissue. Importantly, this punctuated expression was observed in males, but not females, in accord with the sexual dimorphism of neural circuitry and vocal learning in this species. Ongoing functional work will provide important insights into the relationship between Cntnap2 and vocal communication in songbirds and thereby clarify mechanisms at play in disorders of human cognition and language.


Asunto(s)
Encéfalo , Regulación de la Expresión Génica , Aprendizaje/fisiología , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Caracteres Sexuales , Pájaros Cantores , Vocalización Animal/fisiología , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Femenino , Humanos , Hibridación in Situ , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Red Nerviosa , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Pájaros Cantores/anatomía & histología , Pájaros Cantores/fisiología , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...