Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ArXiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38947922

RESUMEN

Alzheimer's disease (AD) is the most prevalent form of dementia with a progressive decline in cognitive abilities. The AD continuum encompasses a prodormal stage known as Mild Cognitive Impairment (MCI), where patients may either progress to AD or remain stable. In this study, we leveraged structural and functional MRI to investigate the disease-induced grey matter and functional network connectivity changes. Moreover, considering AD's strong genetic component, we introduce SNPs as a third channel. Given such diverse inputs, missing one or more modalities is a typical concern of multimodal methods. We hence propose a novel deep learning-based classification framework where generative module employing Cycle GANs was adopted to impute missing data within the latent space. Additionally, we adopted an Explainable AI method, Integrated Gradients, to extract input features relevance, enhancing our understanding of the learned representations. Two critical tasks were addressed: AD detection and MCI conversion prediction. Experimental results showed that our model was able to reach the SOA in the classification of CN/AD reaching an average test accuracy of $0.926\pm0.02$. For the MCI task, we achieved an average prediction accuracy of $0.711\pm0.01$ using the pre-trained model for CN/AD. The interpretability analysis revealed significant grey matter modulations in cortical and subcortical brain areas well known for their association with AD. Moreover, impairments in sensory-motor and visual resting state network connectivity along the disease continuum, as well as mutations in SNPs defining biological processes linked to amyloid-beta and cholesterol formation clearance and regulation, were identified as contributors to the achieved performance. Overall, our integrative deep learning approach shows promise for AD detection and MCI prediction, while shading light on important biological insights.

2.
Neuroimage ; 297: 120674, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38851549

RESUMEN

Brain disorders are often associated with changes in brain structure and function, where functional changes may be due to underlying structural variations. Gray matter (GM) volume segmentation from 3D structural MRI offers vital structural information for brain disorders like schizophrenia, as it encompasses essential brain tissues such as neuronal cell bodies, dendrites, and synapses, which are crucial for neural signal processing and transmission; changes in GM volume can thus indicate alterations in these tissues, reflecting underlying pathological conditions. In addition, the use of the ICA algorithm to transform high-dimensional fMRI data into functional network connectivity (FNC) matrices serves as an effective carrier of functional information. In our study, we introduce a new generative deep learning architecture, the conditional efficient vision transformer generative adversarial network (cEViT-GAN), which adeptly generates FNC matrices conditioned on GM to facilitate the exploration of potential connections between brain structure and function. We developed a new, lightweight self-attention mechanism for our ViT-based generator, enhancing the generation of refined attention maps critical for identifying structural biomarkers based on GM. Our approach not only generates high quality FNC matrices with a Pearson correlation of 0.74 compared to real FNC data, but also uses attention map technology to identify potential biomarkers in GM structure that could lead to functional abnormalities in schizophrenia patients. Visualization experiments within our study have highlighted these structural biomarkers, including the medial prefrontal cortex (mPFC), dorsolateral prefrontal cortex (DL-PFC), and cerebellum. In addition, through cross-domain analysis comparing generated and real FNC matrices, we have identified functional connections with the highest correlations to structural information, further validating the structure-function connections. This comprehensive analysis helps to understand the intricate relationship between brain structure and its functional manifestations, providing a more refined insight into the neurobiological research of schizophrenia.

3.
PLoS One ; 19(5): e0293053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768123

RESUMEN

Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Automático , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Femenino , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Masculino , Imagen por Resonancia Magnética/métodos , Anciano , Persona de Mediana Edad , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Conectoma/métodos , Descanso/fisiología , Estudios de Casos y Controles
4.
Neuroimage ; 292: 120617, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636639

RESUMEN

A primary challenge to the data-driven analysis is the balance between poor generalizability of population-based research and characterizing more subject-, study- and population-specific variability. We previously introduced a fully automated spatially constrained independent component analysis (ICA) framework called NeuroMark and its functional MRI (fMRI) template. NeuroMark has been successfully applied in numerous studies, identifying brain markers reproducible across datasets and disorders. The first NeuroMark template was constructed based on young adult cohorts. We recently expanded on this initiative by creating a standardized normative multi-spatial-scale functional template using over 100,000 subjects, aiming to improve generalizability and comparability across studies involving diverse cohorts. While a unified template across the lifespan is desirable, a comprehensive investigation of the similarities and differences between components from different age populations might help systematically transform our understanding of the human brain by revealing the most well-replicated and variable network features throughout the lifespan. In this work, we introduced two significant expansions of NeuroMark templates first by generating replicable fMRI templates for infants, adolescents, and aging cohorts, and second by incorporating structural MRI (sMRI) and diffusion MRI (dMRI) modalities. Specifically, we built spatiotemporal fMRI templates based on 6,000 resting-state scans from four datasets. This is the first attempt to create robust ICA templates covering dynamic brain development across the lifespan. For the sMRI and dMRI data, we used two large publicly available datasets including more than 30,000 scans to build reliable templates. We employed a spatial similarity analysis to identify replicable templates and investigate the degree to which unique and similar patterns are reflective in different age populations. Our results suggest remarkably high similarity of the resulting adapted components, even across extreme age differences. With the new templates, the NeuroMark framework allows us to perform age-specific adaptations and to capture features adaptable to each modality, therefore facilitating biomarker identification across brain disorders. In sum, the present work demonstrates the generalizability of NeuroMark templates and suggests the potential of new templates to boost accuracy in mental health research and advance our understanding of lifespan and cross-modal alterations.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Adulto , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Encéfalo/diagnóstico por imagen , Adolescente , Adulto Joven , Masculino , Anciano , Femenino , Persona de Mediana Edad , Lactante , Niño , Envejecimiento/fisiología , Preescolar , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Anciano de 80 o más Años , Neuroimagen/métodos , Neuroimagen/normas , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/normas
5.
medRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559205

RESUMEN

Alzheimer's disease (AD) is the most common form of age-related dementia, leading to a decline in memory, reasoning, and social skills. While numerous studies have investigated the genetic risk factors associated with AD, less attention has been given to identifying a brain imaging-based measure of AD risk. This study introduces a novel approach to assess mild cognitive impairment MCI, as a stage before AD, risk using neuroimaging data, referred to as a brain-wide risk score (BRS), which incorporates multimodal brain imaging. To begin, we first categorized participants from the Open Access Series of Imaging Studies (OASIS)-3 cohort into two groups: controls (CN) and individuals with MCI. Next, we computed structure and functional imaging features from all the OASIS data as well as all the UK Biobank data. For resting functional magnetic resonance imaging (fMRI) data, we computed functional network connectivity (FNC) matrices using fully automated spatially constrained independent component analysis. For structural MRI data we computed gray matter (GM) segmentation maps. We then evaluated the similarity between each participant's neuroimaging features from the UK Biobank and the difference in the average of those features between CN individuals and those with MCI, which we refer to as the brain-wide risk score (BRS). Both GM and FNC features were utilized in determining the BRS. We first evaluated the differences in the distribution of the BRS for CN vs MCI within the OASIS-3 (using OASIS-3 as the reference group). Next, we evaluated the BRS in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (using OASIS-3 as the reference group), showing that the BRS can differentiate MCI from CN in an independent data set. Subsequently, using the sMRI BRS, we identified 10 distinct subgroups and similarly, we identified another set of 10 subgroups using the FNC BRS. For sMRI and FNC we observed results that mutually validate each other, with certain aspects being complementary. For the unimodal analysis, sMRI provides greater differentiation between MCI and CN individuals than the fMRI data, consistent with prior work. Additionally, by utilizing a multimodal BRS approach, which combines both GM and FNC assessments, we identified two groups of subjects using the multimodal BRS scores. One group exhibits high MCI risk with both negative GM and FNC BRS, while the other shows low MCI risk with both positive GM and FNC BRS. Moreover, in the UKBB we have 46 participants diagnosed with AD showed FNC and GM patterns similar to those in high-risk groups, defined in both unimodal and multimodal BRS. Finally, to ensure the reproducibility of our findings, we conducted a validation analysis using the ADNI as an additional reference dataset and repeated the above analysis. The results were consistently replicated across different reference groups, highlighting the potential of FNC and sMRI-based BRS in early Alzheimer's detection.

6.
J Neurosci Methods ; 406: 110109, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494061

RESUMEN

BACKGROUND: For successful biomarker discovery, it is essential to develop computational frameworks that summarize high-dimensional neuroimaging data in terms of involved sub-systems of the brain, while also revealing underlying heterogeneous functional and structural changes covarying with specific cognitive and biological traits. However, unsupervised decompositions do not inculcate clinical assessment information, while supervised approaches extract only individual feature importance, thereby impeding qualitative interpretation at the level of subspaces. NEW METHOD: We present a novel framework to extract robust multimodal brain subspaces associated with changes in a given cognitive or biological trait. Our approach involves active subspace learning on the gradients of a trained machine learning model followed by clustering to extract and summarize the most salient and consistent subspaces associated with the target variable. RESULTS: Through a rigorous cross-validation procedure on an Alzheimer's disease (AD) dataset, our framework successfully extracts multimodal subspaces specific to a given clinical assessment (e.g., memory and other cognitive skills), and also retains predictive performance in standard machine learning algorithms. We also show that the salient active subspace directions occur consistently across randomly sub-sampled repetitions of the analysis. COMPARISON WITH EXISTING METHOD(S): Compared to existing unsupervised decompositions based on principle component analysis, the subspace components in our framework retain higher predictive information. CONCLUSIONS: As an important step towards biomarker discovery, our framework not only uncovers AD-related brain regions in the associated brain subspaces, but also enables automated identification of multiple underlying structural and functional sub-systems of the brain that collectively characterize changes in memory and proficiency in cognitive skills related to brain disorders like AD.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Aprendizaje Automático , Neuroimagen , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Neuroimagen/normas , Masculino , Anciano , Femenino , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
7.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38339531

RESUMEN

Network neuroscience, a multidisciplinary field merging insights from neuroscience and network theory, offers a profound understanding of neural network intricacies. However, the impact of varying node sizes on computed graph metrics in neuroimaging data remains underexplored. This study addresses this gap by adopting a data-driven methodology to delineate functional nodes and assess their influence on graph metrics. Using the Neuromark framework, automated independent component analysis is applied to resting state fMRI data, capturing functional network connectivity (FNC) matrices. Global and local graph metrics reveal intricate connectivity patterns, emphasizing the need for nuanced analysis. Notably, node sizes, computed based on voxel counts, contribute to a novel metric termed 'node-metric coupling' (NMC). Correlations between graph metrics and node dimensions are consistently observed. The study extends its analysis to a dataset comprising Alzheimer's disease, mild cognitive impairment, and control subjects, showcasing the potential of NMC as a biomarker for brain disorders. The two key outcomes underscore the interplay between node sizes and resultant graph metrics within a given atlas, shedding light on an often-overlooked source of variability. Additionally, the study highlights the utility of NMC as a valuable biomarker, emphasizing the necessity of accounting for node sizes in future neuroimaging investigations. This work contributes to refining comparative studies employing diverse atlases and advocates for thoughtful consideration of intra-atlas node size in shaping graph metrics, paving the way for more robust neuroimaging research.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Biomarcadores , Encéfalo/diagnóstico por imagen
10.
Commun Med (Lond) ; 3(1): 33, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849746

RESUMEN

BACKGROUND: Radiological identification of temporal lobe epilepsy (TLE) is crucial for diagnosis and treatment planning. TLE neuroimaging abnormalities are pervasive at the group level, but they can be subtle and difficult to identify by visual inspection of individual scans, prompting applications of artificial intelligence (AI) assisted technologies. METHOD: We assessed the ability of a convolutional neural network (CNN) algorithm to classify TLE vs. patients with AD vs. healthy controls using T1-weighted magnetic resonance imaging (MRI) scans. We used feature visualization techniques to identify regions the CNN employed to differentiate disease types. RESULTS: We show the following classification results: healthy control accuracy = 81.54% (SD = 1.77%), precision = 0.81 (SD = 0.02), recall = 0.85 (SD = 0.03), and F1-score = 0.83 (SD = 0.02); TLE accuracy = 90.45% (SD = 1.59%), precision = 0.86 (SD = 0.03), recall = 0.86 (SD = 0.04), and F1-score = 0.85 (SD = 0.04); and AD accuracy = 88.52% (SD = 1.27%), precision = 0.64 (SD = 0.05), recall = 0.53 (SD = 0.07), and F1 score = 0.58 (0.05). The high accuracy in identification of TLE was remarkable, considering that only 47% of the cohort had deemed to be lesional based on MRI alone. Model predictions were also considerably better than random permutation classifications (p < 0.01) and were independent of age effects. CONCLUSIONS: AI (CNN deep learning) can classify and distinguish TLE, underscoring its potential utility for future computer-aided radiological assessments of epilepsy, especially for patients who do not exhibit easily identifiable TLE associated MRI features (e.g., hippocampal sclerosis).


In people with temporal lobe epilepsy, seizures start in a particular part of the brain positioned behind the ears called the temporal lobe. It is difficult for a doctor to detect that a person has temporal lobe epilepsy using brain scans. In this study, we developed a computer model that was able to identify people with temporal lobe epilepsy from scans of their brain. This computer model could be used to help doctors identify temporal lobe epilepsy from brain scans in the future.

11.
Alzheimers Dement (Amst) ; 15(1): e12393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777093

RESUMEN

Introduction: Advances in natural language processing (NLP), speech recognition, and machine learning (ML) allow the exploration of linguistic and acoustic changes previously difficult to measure. We developed processes for deriving lexical-semantic and acoustic measures as Alzheimer's disease (AD) digital voice biomarkers. Methods: We collected connected speech, neuropsychological, neuroimaging, and cerebrospinal fluid (CSF) AD biomarker data from 92 cognitively unimpaired (40 Aß+) and 114 impaired (63 Aß+) participants. Acoustic and lexical-semantic features were derived from audio recordings using ML approaches. Results: Lexical-semantic (area under the curve [AUC] = 0.80) and acoustic (AUC = 0.77) scores demonstrated higher diagnostic performance for detecting MCI compared to Boston Naming Test (AUC = 0.66). Only lexical-semantic scores detected amyloid-ß status (p = 0.0003). Acoustic scores associated with hippocampal volume (p = 0.017) while lexical-semantic scores associated with CSF amyloid-ß (p = 0.007). Both measures were significantly associated with 2-year disease progression. Discussion: These preliminary findings suggest that derived digital biomarkers may identify cognitive impairment in preclinical and prodromal AD, and may predict disease progression. Highlights: This study derived lexical-semantic and acoustics features as Alzheimer's disease (AD) digital biomarkers.These features were derived from audio recordings using machine learning approaches.Voice biomarkers detected cognitive impairment and amyloid-ß status in early stages of AD.Voice biomarkers may predict Alzheimer's disease progression.These markers significantly mapped to functional connectivity in AD-susceptible brain regions.

12.
Hum Brain Mapp ; 44(6): 2158-2175, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36629328

RESUMEN

The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time-resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time-resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U-shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State-based statistical summary measures presented robust and significant group differences that also showed significant age-related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time-resolved brain state trajectories.


Asunto(s)
Envejecimiento , Encéfalo , Niño , Adulto , Humanos , Adolescente , Envejecimiento/patología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Longevidad , Descanso , Vías Nerviosas/diagnóstico por imagen
13.
J Neurosci Methods ; 384: 109744, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36400261

RESUMEN

Deep learning algorithms for predicting neuroimaging data have shown considerable promise in various applications. Prior work has demonstrated that deep learning models that take advantage of the data's 3D structure can outperform standard machine learning on several learning tasks. However, most prior research in this area has focused on neuroimaging data from adults. Within the Adolescent Brain and Cognitive Development (ABCD) dataset, a large longitudinal development study, we examine structural MRI data to predict gender and identify gender-related changes in brain structure. Results demonstrate that gender prediction accuracy is exceptionally high (>97%) with training epochs > 200 and that this accuracy increases with age. Brain regions identified as the most discriminative in the task under study include predominantly frontal areas and the temporal lobe. When evaluating gender predictive changes specific to a two-year increase in age, a broader set of visual, cingulate, and insular regions are revealed. Our findings show a robust gender-related structural brain change pattern, even over a small age range. This suggests that it might be possible to study how the brain changes during adolescence by looking at how these changes are related to different behavioral and environmental factors.


Asunto(s)
Aprendizaje Profundo , Adulto , Adolescente , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Aprendizaje Automático
14.
Res Sq ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168287

RESUMEN

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder requiring accurate and early diagnosis for effective treatment. Resting-state functional magnetic resonance imaging (rs-fMRI) and gray matter volume analysis from structural MRI have emerged as valuable tools for investigating AD-related brain alterations. However, the potential benefits of integrating these modalities using deep learning techniques remain unexplored. In this study, we propose a novel framework that fuses composite images of multiple rs-fMRI networks (called voxelwise intensity projection) and gray matter segmentation images through a deep learning approach for improved AD classification. We demonstrate the superiority of fMRI networks over commonly used metrics such as amplitude of low-frequency fluctuations (ALFF) and fractional ALFF in capturing spatial maps critical for AD classification. We use a multi-channel convolutional neural network incorporating the AlexNet dropout architecture to effectively model spatial and temporal dependencies in the integrated data. Extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset of AD patients and cognitively normal (CN) validate the efficacy of our approach, showcasing improved classification performance of 94.12% test accuracy and an area under the curve (AUC) score of 97.79 compared to existing methods. Our results show that the fusion results generally outperformed the unimodal results. The saliency visualizations also show significant differences in the hippocampus, amygdala, putamen, caudate nucleus, and regions of basal ganglia which are in line with the previous neurobiological literature. Our research offers a novel method to enhance our grasp of AD pathology. By integrating data from various functional networks with structural MRI insights, we significantly improve diagnostic accuracy. This accuracy is further boosted by the effective visualization of this combined information. This lays the groundwork for further studies focused on providing a more accurate and personalized approach to AD diagnosis. The proposed framework and insights gained from fMRI networks provide a promising avenue for future research in deep multimodal fusion and neuroimaging analysis.

15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1855-1858, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085722

RESUMEN

There remains an open question about whether and in what context brain function varies in adolescence and adulthood. In this work, we systematically study the functional brain networks of adolescents and adults, outlining the significant differences in the developing brain detected via time-resolved functional network connectivity (trFNC) derived from a fully automated independent component analysis pipeline applied to resting-state fMRI data in over 50K individuals. We then statistically analyze the transient, recurrent, and robust brain state profiles in both groups. We confirmed the results in independent replication datasets for both groups. Our findings indicate a strengthening of a state reflecting functional coupling within the visual, motor, and auditory domains and anticorrelation with all other domains in a unique adult state profile, a pattern consistently less modular in adolescents. This new insight into possible integration, strengthening, and modularization of resting-state brain connections beyond childhood convergently indicates that the highlighted temporal dynamics likely reflect robust differences in brain function in adolescents versus adults.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Humanos
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3822-3825, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086377

RESUMEN

Here we introduce a multimodal framework to identify subspaces in the human brain that are defined by collective changes in structural and functional measures and are actively linked to demographic, biological and cognitive indicators in a population. We determine the multimodal subspaces using principles of active subspace learning (ASL) and demonstrate its application on a sample learning task (biological ageing) on a schizophrenia dataset. The proposed multimodal ASL method successfully identifies latent brain representations as subsets of brain regions and connections forming covarying subspaces in association with biological age. We show that schizophrenia is characterized by different subspace patterns compared to those in a cognitively normal brain. The multimodal features generated by projecting structural and functional MRI components onto these active subspaces perform better than several PCA-based transformations and equally well when compared to non-transformed features on the studied learning task. In essence, the proposed method successfully learns active brain subspaces associated with a specific brain condition but inferred from the brain imaging data along with the biological/cognitive traits of interest. Clinical relevance- The work introduces a novel way to create multimodal brain biomarkers based on subspaces computed in association with cognitive or biological traits of interest. These subspaces collectively covary maximally in association with a given trait and successfully retain predictive information.


Asunto(s)
Encéfalo , Esquizofrenia , Encéfalo/diagnóstico por imagen , Humanos , Aprendizaje , Imagen por Resonancia Magnética/métodos
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3506-3509, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086465

RESUMEN

The APOE-ε4 allele is a known genetic risk for Alzheimer's disease (AD). Thus, it can be reasoned that the APOE-ε4 allele would also impact neurodegeneration-associated structural brain changes. Here we probe if the APOE-ε4 genotype directly modulates the human brain's gray matter using a neural network trained on the whole-brain gray matter images from the cognitively normally aging (CN) and AD individuals. To investigate the linkage between the APOE-ε4 allele and whole-brain (voxel-wise) gray matter, we systematically profile our investigation in multiple classification tasks, including diagnostic classification and APOE-ε4 classification conjointly as well as independently. Results suggest that although the MRI data can reliably track and reflect neurodegenerative changes in the brain cross-sectionally, the APOE-ε4 status may not be distinguishable correspondingly. The nonexistence of a direct and convincing modulative effect of APOE-ε4 on the whole-brain gray matter indicates that the gray matter changes may be independent of the APOE-ε4 status, and instead characterize a non-APOE, comorbid mechanism in AD.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Alelos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Sustancia Gris/diagnóstico por imagen , Humanos
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3814-3817, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086576

RESUMEN

Deep learning algorithms for predicting from neuroimaging data have shown considerable promise. Deep learning models that take advantage of the data's 3D structure have been proven to outperform ordinary machine learning on a number of learning tasks[1]. The majority of past research in this area, however, has focused on data from adults. Within the Adolescent Brain and Cognitive Development (ABCD) dataset, a major longitudinal development research, we examine the use of structural MRI data to predict gender and to identify gender related changes in brain structure. The results demonstrate that gender prediction accuracy is extremely high (>94%), and that this accuracy increases with age. Brain regions identified as the most discriminative in the task under study include predominantly frontal regions in addition to temporal lobe. When evaluating gender predictive changes specific to a two year increase in age, a broader set of visual, cingulate, and insular regions are revealed. Overall, our findings show a robust pattern of gender related structural brain changes, even over a small age range. This suggests the potential for evaluating the relationship of these changes to various behavioral and environmental factors to further study how the brain develops during adolescence. Clinical relevance- These results are not focused on clinical relevance currently, but in the future may be useful to characterize interactions between gender and potentially clinically relevant measures in adolescents.


Asunto(s)
Aprendizaje Profundo , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
19.
Neuroinformatics ; 20(3): 777-791, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35267145

RESUMEN

Revealing associations among various structural and functional patterns of the brain can yield highly informative results about the healthy and disordered brain. Studies using neuroimaging data have more recently begun to utilize the information within as well as across various functional and anatomical domains (i.e., groups of brain networks). However, most whole-brain approaches assume similar complexity of interactions throughout the brain. Here we investigate the hypothesis that interactions between brain networks capture varying amounts of complexity, and that we can better capture this information by varying the complexity of the model subspace structure based on available training data. To do this, we employ a Bayesian optimization-based framework known as the Tree Parzen Estimator (TPE) to identify, exploit and analyze patterns of variation in the information encoded by temporal information extracted from functional magnetic resonance imaging (fMRI) subdomains of the brain. Using a repeated cross-validation procedure on a schizophrenia classification task, we demonstrate evidence that interactions between specific functional subdomains are better characterized by more sophisticated model architectures compared to less complicated ones required by the others for optimally contributing towards classification and understanding the brain's functional interactions. We show that functional subdomains known to be involved in schizophrenia require more complex architectures to optimally unravel discriminatory information about the disorder. Our study points to the need for adaptive, hierarchical learning frameworks that cater differently to the features from different subdomains, not only for a better prediction but also for enabling the identification of features predicting the outcome of interest.


Asunto(s)
Esquizofrenia , Teorema de Bayes , Encéfalo/patología , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen
20.
PLoS One ; 17(1): e0249502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35061657

RESUMEN

Individuals can be characterized in a population according to their brain measurements and activity, given the inter-subject variability in brain anatomy, structure-function relationships, or life experience. Many neuroimaging studies have demonstrated the potential of functional network connectivity patterns estimated from resting functional magnetic resonance imaging (fMRI) to discriminate groups and predict information about individual subjects. However, the predictive signal present in the spatial heterogeneity of brain connectivity networks is yet to be extensively studied. In this study, we investigate, for the first time, the use of pairwise-relationships between resting-state independent spatial maps to characterize individuals. To do this, we develop a deep Siamese framework comprising three-dimensional convolution neural networks for contrastive learning based on individual-level spatial maps estimated via a fully automated fMRI independent component analysis approach. The proposed framework evaluates whether pairs of spatial networks (e.g., visual network and auditory network) are capable of subject identification and assesses the spatial variability in different network pairs' predictive power in an extensive whole-brain analysis. Our analysis on nearly 12,000 unaffected individuals from the UK Biobank study demonstrates that the proposed approach can discriminate subjects with an accuracy of up to 88% for a single network pair on the test set (best model, after several runs), and 82% average accuracy at the subcortical domain level, notably the highest average domain level accuracy attained. Further investigation of our network's learned features revealed a higher spatial variability in predictive accuracy among younger brains and significantly higher discriminative power among males. In sum, the relationship among spatial networks appears to be both informative and discriminative of individuals and should be studied further as putative brain-based biomarkers.


Asunto(s)
Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...