Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732659

RESUMEN

Nanoparticles of spinel ferrites with a composition of Co0.9Cu0.1Fe2O4 (AM NPs) were effectively synthesized via a hydrothermal route. The structure of ferrite nanoparticles was characterized with X-ray diffraction, which showed a single cubic spinel phase. Energy-dispersive X-ray (EDX) spectroscopy and field emission-scanning electron microscopy (FE-SEM) were employed to analyse elemental composition and surface morphology, respectively. Moreover, the effects of the Co0.9Cu0.1Fe2O4 on the morphology of [PLA = polylactic acid] nanocomposites were examined through polarized light optical microscopy (POM) and X-ray diffraction (XRD). The thermal behaviours for tested samples were studied through [DSC = differential scanning calorimetry] and [TGA = thermal gravimetric analysis]. A great number of minor PLA spherulites were detected using POM in the presence of the Co0.9Cu0.1Fe2O4 ceramic magnetic nanoparticles (AM), increasing with AM nanoparticle contents. X-ray diffraction (XRD) analysis showed that the presence of nanoparticles led to an increase in the intensity of diffraction peaks. The DSC findings implied that the crystallization behaviours for the efficient PLA as well as its nanocomposites were affected by the addition of AM nanoparticles. They act as efficient nucleating agents because they shift the temperature of crystallization to a lower value. The Avrami models were used to analyse kinetics data. The experimental data were well described using the Avrami method for all samples tested. The addition of AM to the PLA matrix resulted in a decrease in the crystallization half-time t1/2 values, indicating a faster crystallization rate. TGA data showed that the occurrence of AM nanoparticles decreased the thermal stability of PLA.

2.
Int J Pharm X ; 7: 100245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38633410

RESUMEN

Infected wounds pose a significant challenge in healthcare, requiring innovative therapeutic strategies. Therefore, there is a critical need for innovative pharmaceutical materials to improve wound healing and combat bacterial growth. This study examined the efficacy of azithromycin-loaded silver nanoparticles (AZM-AgNPs) in treating infected wounds. AgNPs synthesized using a green method with Quinoa seed extract were loaded with AZM. Characterization techniques, including X-ray Powder Diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Uv-Vis analysis were utilized. The agar diffusion assay and determination of the MIC were used to assess the initial antibacterial impact of the formulations on both MRSA and E. coli. In addition, the antimicrobial, wound-healing effects and histological changes following treatment with the AZM-AgNPs were assessed using an infected rat model. The nanoparticles had size of 24.9 ± 15.2 nm for AgNPs and 34.7 ± 9.7 nm for AZM-AgNPs. The Langmuir model accurately characterized the adsorption of AZM onto the AgNP surface, indicating a maximum loading capacity of 162.73 mg/g. AZM-AgNPs exhibited superior antibacterial properties in vivo and in vitro compared to controls. Using the agar diffusion technique, AZM-AgNPs showed enhanced zones of inhibition against E. coli and MRSA, which was coupled with decreased MIC levels. In addition, in vivo studies showed that AZM-AgNP treated rats had the best outcome characterized by improved healing process, lower bacterial counts and superior epithelialization, compared to the control group. In conclusion, AZM-AgNPs can be synthesized using a green method with Quinoa seed with successful loading of azithromycin onto silver nanoparticles. In vitro and in vivo studies suggest the promising use of AZM-AgNPs as an effective therapeutic agent for infected wounds.

3.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37834266

RESUMEN

A novel derivative of ciprofloxacin (Cpx) was synthesized and characterized using various analytical techniques, including FT-IR spectroscopy, UV-Vis spectroscopy, TEM and SEM analysis, 1H NMR, 13C NMR, and HPLC analysis. The newly prepared Cpx derivative (Cpx-Drv) exhibited significantly enhanced antibacterial properties compared to Cpx itself. In particular, Cpx-Drv demonstrated a 51% increase in antibacterial activity against S. aureus and a 30% improvement against B. subtilis. It displayed potent inhibitory effects on topoisomerases II (DNA gyrase and topoisomerase IV) as potential molecular targets, with IC50 values of 6.754 and 1.913 µg/mL, respectively, in contrast to Cpx, which had IC50 values of 2.125 and 0.821 µg/mL, respectively. Docking studies further supported these findings, showing that Cpx-Drv exhibited stronger binding interactions with the gyrase enzyme (PDB ID: 2XCT) compared to the parent Cpx, with binding affinities of -10.3349 and -7.7506 kcal/mole, respectively.


Asunto(s)
Ciprofloxacina , Staphylococcus aureus , Ciprofloxacina/farmacología , Ciprofloxacina/química , Cromatografía Líquida de Alta Presión , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana , Antibacterianos/química , Girasa de ADN , Simulación del Acoplamiento Molecular , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química
4.
Int J Biol Macromol ; 253(Pt 4): 126856, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37714231

RESUMEN

This research aimed to prepare, characterize, and investigate the biological efficacy of chitosan­cobalt (II) oxide hybrid nanocomposites against a variety of micrograms. Analytical methods, FTIR, SEM, XRD, and EDX, were utilized to thoroughly characterize the produced CS-CoO nanocomposite. In FTIR spectra, the presence of the chitosan peaks in addition to that of CoO at 681 and 558 cm-1 confirmed that CoO molecules interact with the chitosan backbone. Moreover, in the XRD measurements, significantly less chitosan crystallinity was observed. Due to the incorporation of a larger amount of cobalt oxide within the polymer matrix. Applying the Debye-Sherrer calculation, the crystallite size was obviously reduced from 48.24 nm (5 wt %) to 19.27 nm (20 wt %) for the obtained nanocomposites. Furthermore, SEM measurements showed a transformation in the chitosan surface with the physical adsorption of CoO molecules on the surface active sites of chitosan that were visible in SEM graphs. Additionally, EDX determined the amount of Co element within the chitosan, with the sample of 20 wt % weight being found to be 19.26 wt %. The variable dose well-diffusion method was utilized to assess the efficacy of the CS-Co nanocomposite against a wide range of bacteria and fungi. CS - CoO nanocomposite is more effective than chitosan alone as an antibacterial agent against both Gram-positive and Gram-negative bacteria. Moreover, the MTT approach was employed to measure the cytotoxicity based on the cell viability of different cancer cell lines under different UV expositions. The proportion of the destroyed cells elevated due to the easy diffusion of CS - CoO nanocomposite into cancer cells as UV-free anticancer activity. UV exposition has stimulated the anticancer activity, which was attributed to an increase in ROS generation caused by the increased dose of the chitosan and its CS - CoO nanocomposites. Furthermore, the antioxidant capacities of the prepared nano-composites thin films were validated using the DPPH free radical scavenging method and showed good antioxidant activities with the DPPH radical compared with standard vitamin C. It has been noticed that by increasing the content of CoO nanoparticles from 5 to 20 wt %, the biological activity of the prepared nanocomposites was enhanced.


Asunto(s)
Quitosano , Nanocompuestos , Quitosano/farmacología , Quitosano/química , Antibacterianos/química , Antioxidantes , Bacterias Gramnegativas , Bacterias Grampositivas , Óxidos/farmacología , Cobalto , Nanocompuestos/química , Preparaciones Farmacéuticas
5.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762562

RESUMEN

A new Schiff base (H2L) generated from sulfamethazine (SMT), as well as its novel micro- and nanocomplexes with Ni(II) and Cd(II) metal ions, have been synthesized. The proposed structures of all isolated solid compounds were identified with physicochemical, spectral, and thermal techniques. Molar conductance studies confirmed that the metal complexes are not electrolytic. The molecular geometry located at the central metal ion was found to be square planar for the NiL2 and tetrahedral for the CdL2 complexes. The kinetic and thermal parameters were obtained using the Coats and Redfern approach. Coriandrum sativum (CS) in ethanol was used to create the eco-friendly Ni and Cd nanocomplexes. The size of the obtained nanoparticles was examined using PXRD and TEM, and found to be in the sub-nano range (3.07-4.61 nm). Furthermore, the TEM micrograph demonstrated a uniform and homogeneous surface morphology. The chemistry of the prepared nanocomplexes was studied using TGA and TEM techniques. The effect of temperature on the prepared nanocomplexes' size revealed a decrease in size by heating. Furthermore, the nanocomplexes' antimicrobial and anticancer properties were evaluated. The outcomes demonstrated that the nanocomplexes exhibited better antimicrobial properties. Moreover, the antitumor results showed that after heating, the Ni nanocomplex exhibited a substantial antitumor activity (IC50 = 1.280 g/mL), which was higher than the activity of cis-platin (IC50 = 1.714 g/mL). Finally, molecular-docking studies were performed to understand the evaluated compounds' ability to bind to methionine adenosyl-transferases (PDB ID: 5A19) in liver cancer and COVID-19 main protease (PDB ID: 6lu7) cell-proteins. The findings reveal that [NiL2]·1.5H2O2 has a higher binding energy of -37.5 kcal/mol with (PDB ID: 5A19) cell protein.


Asunto(s)
COVID-19 , Coriandrum , Iminas , Cadmio , Simulación del Acoplamiento Molecular , Preparaciones Farmacéuticas , Extractos Vegetales/farmacología
6.
Antioxidants (Basel) ; 12(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36829772

RESUMEN

During recent decades, the complexation of organic ligands toward several metal ions of s-p and d-block has been applied as a plan to enhance its antioxidant performance. Due to their wide range of beneficial impacts, coordination compounds are widely used in industries, specifically in the medicinal and pharmaceutical fields. The activity is generally improved by chelation consequently knowing that the characteristics of both ligands and metals can lead to the development of greatly active compounds. Chelation compounds are a substitute for using the traditional synthetic antioxidants, because metal chelates present benefits, including a variety in geometry, oxidation states, and coordination number, that assist and favor the redox methods associated with antioxidant action. As well as understanding the best studied anti-oxidative assets of these compounds, coordination compounds are involved in the free radical scavenging process and protecting human organisms from the opposing effects of these radicals. The antioxidant ability can be assessed by various interrelated systems. The methodological modification offers the most knowledge on the antioxidant property of metal chelates. Colorimetric techniques are the most used, though electron paramagnetic resonance (EPR) is an alternative for metallic compounds, since color does not affect the results. Information about systems, with their benefits, and restrictions, permits a dependable valuation of the antioxidant performance of coordination compounds, as well as assisting application in various states wherever antioxidant drugs are required, such as in food protection, appropriate good-packaged foods, dietary supplements, and others. Because of the new exhaustive analysis of organic ligands, it has become a separate field of research in chemistry. The present investigation will be respected for providing a foundation for the antioxidant properties of organic ligands, future tests on organic ligands, and building high-quality antioxidative compounds.

7.
Materials (Basel) ; 16(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36769903

RESUMEN

A new heterocyclic azo dye ligand (L) was synthesized by the combination of 4-amino antipyrine with 4-aminophenol. The new Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) complexes were synthesized in excellent yields. The metal chelate structures were elucidated using elemental analyses, FT-IR, 1H-NMR, mass, magnetic moment, diffused reflectance spectral and thermal analysis (TG-DTG), and molar conductivity measurement. According to the FT-IR study, the azo dye ligand exhibited neutral tri-dentate behavior, binding to the metal ions with the azo N, carbonyl O, and protonated phenolic OH. The 1H-NMR spectral study of the Zn(II) complex supported the coordination of the zo dye ligand without proton displacement of the phenolic OH. Diffused reflectance and magnetic moment studies revealed the octahedral geometry of the complexes, as well as their good electrolytic nature, excepting the Zn(II) and Cd(II) complexes, which were nonelectrolytes, as deduced from the molar conductivity study. The theoretical calculations of optimized HOMO-LUMO energies, geometrical parameters, electronic spectra, natural atomic charges, 3D-plots of MEP, and vibrational wavenumbers were computed and elucidated using LANL2DZ and 6-311G (d, p) basis sets of density functional theory (DFT) with the approach of B3LYP DFT and TD-DFT methods. The ligand and complexes have been assayed for their antimicrobial activity and compared with the standard drugs. Most of the complexes have manifested excellent antimicrobial activity against various microbial strains. A molecular docking investigation was also performed, to acquire more information about the binding mode and energy of the ligand and its metal complexes to the Escherichia coli receptor using molecular docking. Altogether, the newly created ligand and complexes showed positive antibacterial effects and are worth future study.

8.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012623

RESUMEN

The corrosion inhibition of transition metal chelates derived from Schiff base ligands was tested for (mild, copper, stainless, aluminum and carbon) steel in various concentrations of (HCl, HNO3 and H2SO4) acidic medium at 25 °C through (weight loss, potentiodynamic polarization, polarization curves, electrochemical impedance spectroscopy (EIS) and open circuit potential measurements (OCP)) techniques. The studied compounds were identified with various spectral, analytical and physico-chemical techniques. It was observed that the investigated compounds had a significant inhibitory impact on the corrosion of diverse steels in the medium investigated. The analysis shows that increasing the dose of the studied complexes improves the corresponding inhibitory efficiency values. Negative results of Gibb's free adsorption energy (ΔGads0) prove the suppression process's spontaneous and physical adsorption, which contradicts the Langmuir adsorption isotherm. As a result of this insight, a novel bridge between nuclearity driven coordinated inorganic chemistry and materials, as well as corrosion control, has been built. This review provides an overview of the use of Schiff bases and associated transition metals as potential corrosion inhibitors, including the factors that influence their application.


Asunto(s)
Iminas , Acero , Adsorción , Quelantes , Corrosión , Bases de Schiff/química , Acero/química
9.
Materials (Basel) ; 15(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35888309

RESUMEN

Some novel imine metal chelates with Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ cations were produced from 2-acetylferrocene and 3-aminophenol. The new acetylferrocene azomethine ligand ((Z)-cyclopenta-1,3-dien-1-yl(2-(1-((3-hydroxyphenyl)imino)ethyl)cyclopenta-2,4-dien-1-yl)iron) and its metal ion chelates were constructed and elucidated using FT-IR, UV/Vis, 1HNMR, DTA/TGA, CHNClM studies, mass spectrometry and SEM analysis. According to the TGA/DTG investigation, the ferrocene moiety spontaneously disintegrates to liberate FeO. The morphology of the free acetylferrocene azomethine via SEM analysis was net-shaped with a size of 64.73 nm, which differed in Cd(II) complex to be a spongy shape with a size of 42.43 nm. The quantum chemical features of the azomethine ligand (HL) were computed, and its electronic and molecular structure was refined theoretically. The investigated acetylferrocene imine ligand behaves as bidinetate ligand towards the cations under study to form octahedral geometries in case of all complexes except in case of Zn2+ is tetrahedral. Various microorganisms were used to investigate the anti-pathogenic effects of the free acetylferrocene azomethine ligand and its metal chelates. Moreover, the prepared ligand and its metal complexes were tested for anticancer activity utilizing four different concentrations against the human breast cancer cell line (MCF7) and the normal melanocyte cell line (HBF4). Furthermore, the binding of 3-aminophenol, 2-acetylferrocene, HL, Mn2+, Cu2+, and Cd2+ metal chelates to the receptor of breast cancer mutant oxidoreductase was discovered using molecular docking (PDB ID: 3HB5).

10.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893512

RESUMEN

The interest in magnetic nanostructures exhibiting perpendicular magnetic anisotropy and exchange bias (EB) effect has increased in recent years owing to their applications in a new generation of spintronic devices that combine several functionalities. We present a nanofabrication process used to induce a significant out-of-plane component of the magnetic easy axis and EB. In this study, 30 nm thick CoO/Co multilayers were deposited on nanostructured alumina templates with a broad range of pore diameters, 34 nm ≤ Dp ≤ 96 nm, maintaining the hexagonal lattice parameter at 107 nm. Increase of the exchange bias field (HEB) and the coercivity (HC) (12 times and 27 times, respectively) was observed in the nanostructured films compared to the non-patterned film. The marked dependence of HEB and HC with antidot hole diameters pinpoints an in-plane to out-of-plane changeover of the magnetic anisotropy at a nanohole diameter of ∼75 nm. Micromagnetic simulation shows the existence of antiferromagnetic layers that generate an exceptional magnetic configuration around the holes, named as antivortex-state. This configuration induces extra high-energy superdomain walls for edge-to-edge distance >27 nm and high-energy stripe magnetic domains below 27 nm, which could play an important role in the change of the magnetic easy axis towards the perpendicular direction.

11.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35742870

RESUMEN

Coronavirus disease (SARS-CoV-2) is a global epidemic. This pandemic, which has been linked to high rates of death, has forced some countries throughout the world to implement complete lockdowns in order to contain the spread of infection. Because of the advent of new coronavirus variants, it is critical to find effective treatments and vaccines to prevent the virus's rapid spread over the world. In this regard, metal complexes have attained immense interest as antibody modifiers and antiviral therapies, and they have a lot of promise towards SARS-CoV-2 and their suggested mechanisms of action are discussed, i.e., a new series of metal complexes' medicinal vital role in treatment of specific proteins or SARS-CoV-2 are described. The structures of the obtained metal complexes were fully elucidated by different analytical and spectroscopic techniques also. Molecular docking and pharmacophore studies presented that most of complexes studied influenced good binding affinity to the main protease SARS-CoV-2, which also was attained as from the RCSB pdb (Protein Data Bank) data PDB ID: 6 W41, to expect the action of metal complexes in contradiction of COVID-19. Experimental research is required to determine the pharmacokinetics of most of the complexes analyzed for the treatment of SARS-CoV-2-related disease. Finally, the toxicity of a metal-containing inorganic complex will thus be discussed by its capability to transfer metals which may bind with targeted site.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Complejos de Coordinación , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico , Control de Enfermedades Transmisibles , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2
12.
Materials (Basel) ; 15(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35629702

RESUMEN

The newly synthesized organometallic acetyl ferrocene imine ligand (HL) was obtained by the direct combination of 2-acetyl ferrocene with 2-aminothiophenol. The electronic and molecular structure of acetyl ferrocene imine ligand (HL) was refined theoretically and the chemical quantum factors were computed. Complexes of the acetyl ferrocene imine ligand with metal(II)/(III) ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)) were fabricated. They were inspected by thermal (DTG/TG), spectroscopic techniques (FT-IR, 1H NMR, mass, UV-Vis), molar conductivity, and CHNClM to explicate their structures. Studies using scanning electron microscope (SEM) were conducted on the free acetyl ferrocene imine ligand and its Cd(II) chelate to confirm their nano-structure. To collect an idea about the effect of metal ions on anti-pathogenic properties upon chelation, the newly synthesized acetyl ferrocene imine ligand and some of its metal chelates were tested against a variety of microorganisms, including Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, Aspergillus fumigatus, and Candida albicans. The ligand and its metal chelate were tested for cytotoxic activity in human cancer (MCF-7 cell viability) and human melanocyte cell line HBF4. It was discovered that the Cd(II) chelate had the lowest IC50 of the three and thus had the prior activity. Molecular docking was utilized to investigate the interaction of acetyl ferrocene imine ligand (HL) with the receptors of the vascular endothelial growth factor receptor VEGFR (PDB ID: 1Y6a), human Topo IIA-bound G-segment DNA crystal structure (PDB ID: 2RGR), and Escherichia coli crystal structure (PDB ID: 3T88).

13.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35409353

RESUMEN

Two tetradentate dibasic chelating Schiff base iron (III) chelates were prepared from the reaction of 2,2'-((1E,1'E)-(1,2-phenylenebis(azanylylidene))bis(methanylylidene))bis(4-bromophenol) (PDBS) and 2,2'-((1E,1'E)-((4-chloro-1,2-phenylene)bis(azanylylidene))-bis(methanylylidene))bis(4-bromophenol) (CPBS) with Fe3+ ions. The prepared complexes were fully characterized with spectral and physicochemical tools such as IR, NMR, CHN analysis, TGA, UV-visible spectra, and magnetic moment measurements. Moreover, geometry optimizations for the synthesized ligands and complexes were conducted using the Gaussian09 program through the DFT approach, to find the best structures and key parameters. The prepared compounds were tested as antimicrobial agents against selected strains of bacteria and fungi. The results suggests that the CPBSFe complex has the highest activity, which is close to the reference. An MTT assay was used to screen the newly synthesized compounds against a variety of cell lines, including colon cancer cells, hepatic cellular carcinoma cells, and breast carcinoma cells. The results are expressed by IC50 value, in which the 48 µg/mL value of the CPBSFe complex indicates its success as a potential anticancer agent. The antioxidant behavior of the two imine chelates was studied by DPPH assay. All the tested imine complexes show potent antioxidant activity compared to the standard Vitamin C. Furthermore, the in vitro assay and the mechanism of binding and interaction efficiency of the tested samples with the receptor of COVID-19 core protease viral protein (PDB ID: 6lu7) and the receptor of Gram-negative bacteria (Escherichia coli, PDB ID: 1fj4) were investigated using molecular docking experiments.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Iminas , Quelantes/química , Quelantes/farmacología , ADN/química , Teoría Funcional de la Densidad , Compuestos Férricos , Humanos , Iminas/química , Iminas/farmacología , Simulación del Acoplamiento Molecular , Preparaciones Farmacéuticas
14.
Histochem Cell Biol ; 157(6): 641-656, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35157114

RESUMEN

Polyethylene glycol (PEG) is a multifunctional polymer that has many uses in medical and biological applications. Recently, PEG has been mainly used in developing nanomaterial-based drug delivery systems (DDS). PEG is characterized by its high solubility, biological inertness, and ability to escape from immune cells (stealthiness) after systemic injection. The most challenging problem for PEGylated nanomaterials is their rapid elimination from the bloodstream after repeated doses of systemic injection, called accelerated blood clearance (ABC). Therefore, in this study, the effect of PEGylated nanomaterial dose concentration on ABC induction will be investigated using quantitative, histological, and immunohistochemical analyses. A higher dose concentration (2 mg/kg) of PEGylated gold nanoparticles (PEG-coated AuNPs) reduced the ABC phenomenon when intravenously injected into mice preinjected with the same dose. In contrast, a lower dose concentration (< 1 mg/kg) significantly induced the ABC phenomenon by the rapid elimination of the second dose of PEG-coated AuNPs from the bloodstream. To explain the relationship between the dose concentration (from PEG and AuNPs) and the induction of ABC, the biodistribution of PEG-coated AuNPs in liver and spleen [reticuloendothelial systems (RES)-rich organs] was investigated. The injected dose of PEG-coated AuNPs accumulated mainly in the hepatic Kupffer cells and hepatocytes. Similarly, spleen red pulp received a higher amount of the injected dose of PEG-coated AuNPs. However, the biodistriution profiles of PEG-coated AuNPs after the first and second dose for different dose concentrations varied in RES-rich organs. Additionally, the number of B lymphocytes, which have an important role in producing anti-PEG immunoglobulin (Ig)M, was affected by the repeated dose of PEG-coated AuNPs in the spleen. Therefore, for effective nanomaterial-based DDS development, dose optimization of PEG molecules that express PEGylated nanomaterials is important to reduce the ABC phenomenon effect. The ideal concentration of PEG molecules used to coat nanomaterials and the role of RES-rich organs must be determined to control the ABC phenomenon effect of PEGylated nanomaterials.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Linfocitos B , Inmunoglobulina M/metabolismo , Liposomas/química , Liposomas/metabolismo , Ratones , Polietilenglicoles/química , Polietilenglicoles/farmacología , Bazo , Distribución Tisular
15.
Comput Biol Chem ; 97: 107643, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35189479

RESUMEN

The current research focuses on the treatment of Cr(III), Fe(III) and Cu(II) metal ions with aryl hydrazone ligand named (E)-4-(((diphenylmethylene)hydrazono)methyl)benzene-1,3-diol (DPHB) to afford four novel solid complexes with high yields. Different characterization approaches, including infrared, UV-visible, and NMR spectroscopies, elemental analyses, and thermal gravimetric analysis (TGA), revealed that all mononuclear crystalline metal chelates with good thermal stability had a six-coordination with octahedral geometry. Density Functional Theory (DFT) computations were used and provided a reasonable explanation for these metal chelates' electrical and structural features. Furthermore, investigations of electronic absorption spectroscopy, hydrodynamics, and electrophoresis demonstrated that these new compounds interact with calf thymus deoxyribonucleic acid (CT-DNA) in a variety of ways. As a result, the Kb and ∆Gb≠ values of such interactions were in the following order: DPHBCu > DPHBCr > DPHBFe complex. Additionally, the novel metal chelates have been studied anti-bathogenically and found to be significantly effective compared to the comparable DPHB hydrazone ligand. The anti-proliferative activities of the investigated compounds were also evaluated against different lines of cancer cells and exhibited significant cytotoxic activity. In addition, observations of antioxidant activity suggest that antioxidant activity relative to ordinary ascorbic acid was demonstrated in the molecule.


Asunto(s)
Compuestos Férricos , Hidrazonas , ADN/química , Teoría Funcional de la Densidad , Hidrazonas/farmacología , Ligandos , Pruebas de Sensibilidad Microbiana
16.
Pharmaceutics ; 14(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35057019

RESUMEN

Skin is the largest mechanical barrier against invading pathogens. Following skin injury, the healing process immediately starts to regenerate the damaged tissues and to avoid complications that usually include colonization by pathogenic bacteria, leading to fever and sepsis, which further impairs and complicates the healing process. So, there is an urgent need to develop a novel pharmaceutical material that promotes the healing of infected wounds. The present work aimed to prepare and evaluate the efficacy of novel azithromycin-loaded zinc oxide nanoparticles (AZM-ZnONPs) in the treatment of infected wounds. The Box-Behnken design and response surface methodology were used to evaluate loading efficiency and release characteristics of the prepared NPs. The minimum inhibitory concentration (MIC) of the formulations was determined against Staphylococcus aureus and Escherichia coli. Moreover, the anti-bacterial and wound-healing activities of the AZM-loaded ZnONPs impregnated into hydroxyl propyl methylcellulose (HPMC) gel were evaluated in an excisional wound model in rats. The prepared ZnONPs were loaded with AZM by adsorption. The prepared ZnONPs were fully characterized by XRD, EDAX, SEM, TEM, and FT-IR analysis. Particle size distribution for the prepared ZnO and AZM-ZnONPs were determined and found to be 34 and 39 nm, respectively. The mechanism by which AZM adsorbed on the surface of ZnONPs was the best fit by the Freundlich model with a maximum load capacity of 160.4 mg/g. Anti-microbial studies showed that AZM-ZnONPs were more effective than other controls. Using an experimental infection model in rats, AZM-ZnONPs impregnated into HPMC gel enhanced bacterial clearance and epidermal regeneration, and stimulated tissue formation. In conclusion, AZM -loaded ZnONPs are a promising platform for effective and rapid healing of infected wounds.

17.
Curr Drug Deliv ; 19(4): 436-450, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34238185

RESUMEN

Nanotechnology provides the means to design and fabricate delivery vehicles capable of overcoming physiologically imposed obstacles and undesirable side effects of systemic drug delivery. This protocol allows maximal targeting effectiveness and therefore enhances therapeutic efficiency. In recent years, Mesoporous Silica Nanoparticles (MSNPs) have sparked interest in nanomedicine research community, particularly for their promising applications in cancer treatment. The intrinsic physio-chemical stability, facile functionalization, high surface area, low toxicity, and great loading capacity for a wide range of chemotherapeutic agents make MSNPs very appealing candidates for controllable drug delivery systems. Importantly, the peculiar nanostructures of MSNPs enabled them to serve as an effective drug, gene, protein and antigen delivery vehicle for a variety of therapeutic regimens. For these reasons, in this review article, we underscore the recent progress in the design and synthesis of MSNPs along with the parameters influencing their characteristic features and activities. In addition, the process of absorption, dissemination and secretion by injection or oral management of MSNPs are also discussed, as they are key directions for potential utilization of MSNPs. Factors influencing the in vivo fate of MSNPs will also be highlighted, with a main focus on particle size, morphology, porosity, surface functionality and oxidation. Given that combining other functional materials with MSNPs may increase their biological compatibility, monitor drug discharge, or improve absorption by tumor cells coated MSNPs; these aspects are also covered and discussed herein.


Asunto(s)
Antineoplásicos , Nanopartículas , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Nanopartículas/química , Porosidad , Dióxido de Silicio/química
18.
Materials (Basel) ; 16(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36614421

RESUMEN

Through the condensation of isatin (indoline-2, 3-dione) and aniline in a 1:1 ratio, a Schiff base ligand was synthesized and characterized via (1H-NMR, mass, IR, UV-Vis) spectra. Elemental analyses, spectroscopy (1H-NMR, mass, UV-Vis), magnetic susceptibility, molar conductivity, mass spectra, scanning electron microscope (SEM), and thermal analysis have all been used to characterize a series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) metal complexes derived from the titled ligand. The metal-to-ligand ratio is 1:1, according to the analytical data. The Schiff base ligand displayed bidentate behavior with NO coordination sites when it bonded to metal ions, as seen by the IR spectra. The magnetic moment measurement and UV-Vis spectral investigation showed the octahedral geometry of the Cr(III), Fe(III), Co(II), Ni(II), and Zn(II) complexes, whereas they suggested the tetrahedral geometry of the Mn(II), Cu(II), and Cd(II) complexes. The thermal analysis study confirmed the presence of both hydrated and coordinated water molecules in all the compounds, except for the Mn(II) complex, and showed that the complexes decomposed in three or five decomposition steps leaving the corresponding metal oxide as a residue. The ligand and its metal complexes' antibacterial efficacy were evaluated. The findings showed that the metal complexes had stronger antibacterial properties than the ligand alone. The ligand and its metal complexes' anticancer properties were also investigated. A DFT investigation is also reported to gather information regarding the electronic features of the ligand and its metal complexes. Finally, drug-likeness and ADME characteristics were also calculated as parameters.

19.
ACS Omega ; 6(32): 21071-21086, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34423215

RESUMEN

In this study, we are interested in preparing Fe(III), Pd(II), and Cu(II) complexes from new thiazole derivatives. All syntheses were elaborately elucidated to estimate their molecular and structural formulae, which agreed with those of mononuclear complexes. The square-planer geometry of Pd(II) complex (MATYPd) was the starting point for its use as a heterocatalyst in preparing pyrazole-4-carbonitrile derivatives 4a-o using ultrasonic irradiation through a facile one-pot reaction. The simple operation, short-time reaction (20 min), and high efficiency (97%) were the special advantages of this protocol. Furthermore, this green synthesis strategy was advanced by examination of the reusability of the catalyst in four consecutive cycles without significant loss of catalytic activity. The new synthesis strategy presented remarkable advantages in terms of safety, simplicity, stability, mild conditions, short reaction time, excellent yields, and use of a H2O solvent. This catalytic protocol was confirmed by the density functional theory (DFT) study, which reflected the specific characteristics of such a complex. Logical mechanisms have been suggested for the successfully exerted essential physical parameters that confirmed the superiority of the Pd(II) complex in the catalytic role. Optical band gap, electrophilicity, and electronegativity features, which are essential parameters for the catalytic behavior of the Pd(II) complex, are based mainly on the unsaturated valence shell of Pd(II).

20.
Pharmaceutics ; 13(2)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562032

RESUMEN

Colorectal cancer (CRC) is the third highest major cause of morbidity and mortality worldwide. Hence, many strategies and approaches have been widely developed for cancer treatment. This work prepared and evaluated the antitumor activity of 5-Fluorouracil (5-Fu) loaded chromium nanoparticles (5-FuCrNPs). The green biosynthesis approach using Harpullia (H) pendula aqueous extract was used for CrNPs preparation, which was further loaded with 5-Fu. The prepared NPs were characterized for morphology using scanning and transmission electron microscopes (SEM and TEM). The results revealed the formation of uniform, mono-dispersive, and highly stable CrNPs with a mean size of 23 nm. Encapsulation of 5-Fu over CrNPs, with a higher drug loading efficiency, was successful with a mean size of 29 nm being produced. In addition, Fourier transform infrared (FTIR) and X-ray diffraction pattern (XRD) were also used for the investigation. The drug 5-Fu was adsorbed on the surface of biosynthesized CrNPs in order to overcome its clinical resistance and increase its activity against CRC cells. Box-Behnken Design (BBD) and response surface methodology (RSM) were used to characterize and optimize the formulation factors (5-Fu concentration, CrNP weight, and temperature). Furthermore, the antitumor activity of the prepared 5-FuCrNPs was tested against CRC cells (CACO-2). This in vitro antitumor study demonstrated that 5-Fu-loaded CrNPs markedly decreased the IC50 of 5-Fu and exerted more cytotoxicity at nearly all concentrations than 5-Fu alone. In conclusion, 5-FuCrNPs is a promising drug delivery system for the effective treatment of CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA