Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Pharmacol ; 16: 211-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38826848

RESUMEN

Background: Faidherbia albida, popularly known as gawo in Hausa, is traditionally used to treat jaundice in Zuru emirate of Kebbi State. Herein, the ameliorative effect of F. albida against 2.4-dinitrophenylhydrazine-induced hyperbilirubinemia in Wistar albino rats was investigated. Methods: Thirty healthy rats were administered 75 mg of 2.4-dinitrophenylhydrazine to induce hyperbilirubinemia. Thereafter, groups 1-3 received 500, 750, and 1000 mg/kg body weight of the methanol stem-bark extract, and 15 mg/kg of phenobarbitone (standard drug) was administered to group 4. Groups 5 and 6 served as the untreated and normal controls, respectively. The phytochemical composition was evaluated using standard methods, and acute oral toxicity was evaluated using standard OECD 2008 guidelines. Results: Phytochemical analysis revealed the presence of alkaloids, phenols, and a substantial amount of tannins. A significant (P<0.05) reduction of direct bilirubin, total bilirubin, and total protein levels for all the doses of the extract and standard drug compared to untreated groups was observed. Similarly, there were significant reductions in serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels of the group treated with the standard drug and all extract-treated groups compared to elevated levels observed in untreated controls. However, a significant (P<0.05) increase in serum albumin (ALB) levels, red blood cells, hemoglobin, and pack cell volume was observed in all extract-treated compared to the untreated control in contrast to a significant decrease in MCH levels in treated groups compared to the untreated group. Conclusion: F. albida ameliorated the hyperbilirubinemia induced by 2.4-dinitrophenylhydrazine in Wistar albino rats, thus providing some support for its use in traditional medicine to treat jaundice.

2.
In Silico Pharmacol ; 11(1): 10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073308

RESUMEN

Prostate cancer is a leading cause of morbidity and mortality among men globally. In this study, we employed an in silico approach to predict the possible mechanisms of action of selected novel compounds reported against prostate cancer epigenetic targets and their derivatives, exhausting through ADMET profiling, drug-likeness, and molecular docking analyses. The selected compounds: sulforaphane, silibinin, 3, 3'-diindolylmethane (DIM), and genistein largely conformed to ADMET and drug-likeness rules including Lipinski's. Docking studies revealed strong binding energy of sulforaphane with HDAC6 (- 4.2 kcal/ mol), DIM versus HDAC2 (- 5.2 kcal/mol), genistein versus HDAC6 (- 4.1 kcal/mol), and silibinin against HDAC1 (- 7.0 kcal/mol) coupled with improved binding affinities and biochemical stabilities after derivatization. Findings from this study may provide insight into the potential epigenetic reprogramming mechanisms of these compounds against prostate cancer and could pave the way toward more success in prostate cancer phytotherapy.

3.
Nat Prod Res ; 37(17): 2965-2968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36308291

RESUMEN

Mitracarpus hirtus (L.) DC. is a weed plant commonly used for the treatment of eczema. The potential of the plant to treat cancer has not been emphasized, hence the need to explore its anticancer potential. M. hirtus was extracted and subjected to petition with solvents of increasing polarity. Its cytotoxic potential was evaluated against MCF-7, HepG2, and HeLa cells using the Neutral red assay and further verified through morphological assessment and DNA fragmentation assay. Crude chloroform fraction (CCF) displayed a cytotoxic effect on all the cell lines with low IC50 concentrations ranging from 11-17.87 µg/mL. Morphological assessment of MCF-7 exposed to CCF indicates apoptotic cell death and is further confirmed by its DNA fragmentation. Our data suggest that M. hirtus is a potential source for mining anticancer agents.

4.
Eur J Integr Med ; 49: 102094, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36573184

RESUMEN

Introduction: For decades, viral diseases have been treated using medicinal plants and herbal practices in the northern part of Nigeria. Though scarcely investigated, these medicinal plants could serve as potential sources for novel antiviral drugs against emerging and remerging viral diseases. Therefore, this study is aimed at investigating the medicinal practices and plants used to treat emerging and re-emerging viral diseases including hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19 in some northern states; Katsina, Kebbi, Kwara and Sokoto states. Method: Administered questionnaires and oral interviews were used to collect information on medicinal plants, method of preparation of herbal formulations, diagnosis, and treatment of viral diseases. Medicinal plants were collected, botanically identified, and assigned voucher numbers. The plant names were verified using www.theplantlist.org, www.worldfloraonline.org and the international plant names index. Result: A total of 280 participating herbal medicine practitioners (HMPs) mentioned 131 plants belonging to 65 families. Plant parts such as roots, bark, leaf, seed, and fruit were prepared as a decoction, concoction, infusion, or ointment for oral and topical treatment of viral diseases. Moringa oleifera (75.3%), Elaeis guineensis Jacq. (80%), and Acacia nilotica (70%) were the most frequently mentioned plants in Kebbi, Kwara and Sokoto states, respectively. Conclusion: The study revealed scarcely investigated and uninvestigated medicinal plants used to treat hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19. Future studies should be conducted to determine the antiviral potency and isolate novel bioactive agents from these plants against viral diseases.

5.
Epigenomics ; 14(11): 711-726, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35473304

RESUMEN

Current research on triple-negative breast cancer (TNBC) has resulted in delineation into the quadruple-negative breast cancer (QNBC) subgroup. Epigenetic modifications such as DNA methylation, histone posttranslational modifications and associated changes in chromatin architecture have been implicated in breast cancer pathogenesis. Herein, the authors highlight genes with observed epigenetic modifications that are associated with more aggressive TNBC/QNBC pathogenesis and possible interventions. Advanced literature searches were done on PubMed/MEDLINE, Scopus and Google Scholar. The results suggest that nine epigenetically altered genes/differentially expressed proteins in addition to the downregulated androgen receptor are associated with TNBC aggressiveness and could be implicated in the TNBC to QNBC transition. Thus, restoring the normal expression of these genes via epigenetic reprogramming could be therapeutically beneficial to TNBC and QNBC patients.


When the androgen hormone receptor becomes inactive in triple-negative breast cancer (TNBC) patients, it results in another subtype of breast cancer called quadruple-negative breast cancer (QNBC). This is because these patients already lack the biological activities of three other important hormone receptors. The functions of these receptors are targeted by some drugs used in the management of breast cancers, so the lack of these receptors in TNBC and QNBC patients is thought to be linked with poor response to treatment. Some epigenetic modifications are involved in a more severe disease that is very difficult to control in TNBC patients and could facilitate its transition to the more aggressive QNBC subtype. Treatment response could be improved by restoring the normal function of the altered genes by reversing the observed epigenetic alterations.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Metilación de ADN , Epigénesis Genética , Epigenómica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias de la Mama Triple Negativas/patología
6.
J Food Biochem ; 46(5): e14079, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35060145

RESUMEN

Cytokine storm is a phrase used to refer to an abrupt upsurge in the circulating levels of various pro-inflammatory cytokines, causing increased stimulation and activity of immune cells during disease conditions. The binding of pattern recognition receptors to pathogen-associated molecular patterns during COVID-19 infection recruits response machinery involving the activation of transcription factors and proteins required for a robust immune response by host cells. These immune responses could be influenced by epigenetic modifications as evidenced by significant variations in COVID-19 pathophysiology and response to therapy observed among patients across the globe. Considering that circulating levels of interleukin 1, tumor necrosis factor-α, and interleukin 6 are significantly elevated during cytokine storm in COVID-19 patients, genetic and epigenetic variations in the expression and function of these proteins could enhance our understanding of the disease pathogenesis. Treatment options that repress the transcription of specific cytokine genes during COVID-19 infection could serve as possible targets to counteract cytokine storm in COVID-19. Therefore, the present article reviews the roles of cytokines and associated genes in the COVID-19 cytokine storm, identifies epigenetic modifications associated with the disease progression, and possible ameliorative effects of some vitamins and minerals obtained as epigenetic modifiers for the control of cytokine storm and disease severity in COVID-19 patients. PRACTICAL APPLICATIONS: COVID-19 causes mortality and morbidity that adversely affect global economies. Despite a global vaccination campaign, side effects associated with vaccination, misconceptions, and a number of other factors have affected the expected successes. Cytokine storm in COVID-19 patients contributes to the disease pathogenesis and response to therapy. Epigenetic variations in the expression of various cytokines could be implicated in the different outcomes observed in COVID-19 patients. Certain vitamins and minerals have been shown to interfere with the expression and activity of cytokines implicated in cytokine storm, thereby counteracting observed pathologies. This review examines cytokines implicated in cytokine storm in COVID-19, epigenetic modifications that contribute to increased expression of identified cytokines, specific foods rich in the identified vitamins and minerals, and suggests their possible ameliorative benefits. The article will be beneficial to both scientists and the general public who are interested in the role of vitamins and minerals in ameliorating COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Síndrome de Liberación de Citoquinas , COVID-19/genética , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/genética , Citocinas/genética , Epigénesis Genética , Humanos , Minerales , SARS-CoV-2 , Vitamina A , Vitaminas
7.
J Biomol Struct Dyn ; 40(3): 1347-1362, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32964804

RESUMEN

Cancer is a rapidly growing non-communicable disease worldwide that is responsible for high mortality rates, which account for 9.6 million death in 2018. Dihydroartemisinin (DHA) is an active metabolite of artemisinin, an active principle present in the Chinese medicinal plant Artemisia annua used for malaria treatment. Dihydroartemisinin possesses remarkable and selective anticancer properties however the underlying mechanism of the antitumor effects of DHA from the structural point of view is still not yet elucidated. In the present study, we employed molecular docking simulation techniques using Autodock suits to access the binding properties of dihydroartemisinin to multiple protein targets implicated in cancer pathogenesis. Its potential targets with comprehensive pharmacophore were predicted using a PharmMapper database. The co-crystallised structures of the protein were obtained from a Protein Data Bank and prepared for molecular docking simulation. Out of the 24 selected protein targets, DHA has shown about 29% excellent binding to the targets compared to their co-crystallised ligand. Additionally, 75% of the targets identified for dihydroartemisinin binding are protein kinases, and 25% are non-protein kinases. Hydroxyl functional group of dihydroartemisinin contributed to 58.5% of the total hydrogen interactions, while pyran (12.2%), endoperoxide (9.8%), and oxepane (19.5%) contributed to the remaining hydrogen bonding. The present findings have elucidated the possible antitumor properties of dihydroartemisinin through the structural-based virtual studies, which provides a lead to a safe and effective anticancer agent useful for cancer therapy.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Artemisininas , Neoplasias , Artemisininas/farmacología , Artemisininas/uso terapéutico , Detección Precoz del Cáncer , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico
8.
In Silico Pharmacol ; 8(1): 4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194532

RESUMEN

ABSTRACT: Breast cancer is one of the leading causes of death among women. We employed in silico model to predict the mechanism of actions of selected novel compounds reported against breast cancer using ADMET profiling, drug likeness and molecular docking analyses. The selected compounds were andrographolide (AGP), dipalmitoylphosphatidic acid (DPA), 3-(4-Bromo phenylazo)-2,4-pentanedione (BPP), atorvastatin (ATS), benzylserine (BZS) and 3ß,7ß,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD). These compounds largely conform to ADMETlab and Lipinki's rule of drug likeness criteria in addition to their lesser hepatotoxic and mutagenic effects. Docking studies revealed a strong affinity of AGP versus NF-kB (- 6.8 kcal/mol), DPA versus Cutlike-homeobox (- 5.1 kcal/mol), BPP versus Hypoxia inducing factor 1 (- 7.7 kcal/mol), ATS versus Sterol Regulatory Element Binding Protein 2 (- 7.2 kcal/mol), BZS versus Ephrin type-A receptor 2 (- 4.4 kcal/mol) and TCD versus Ying Yang 1 (- 9.4 kcal/mol). Likewise, interaction between the said compounds and respective gene products were evidently observed with strong affinities; AGP versus COX-2 (- 9.6 kcal/mol), DPA versus Fibroblast growth factor receptor (- 5.9 kcal/mol), BPP versus Vascular endothelial growth factor (- 5.8 kcal/mol), ATS versus HMG-COA reductase (- 9.1 kcal/mol), BZS versus L-type amino acid transporter 1 (- 5.3 kcal/mol) and TCD versus Histone deacytylase (- 7.7 kcal/mol), respectively. The compounds might potentially target transcription through inhibition of promoter-transcription factor binding and/or inactivation of final gene product. Thus, findings from this study provide a possible mechanism of action of these xenobiotics to guide in vitro and in vivo studies in breast cancer.

9.
Heliyon ; 6(9): e04830, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32939417

RESUMEN

This study was designed to explore and record various medicinal plants integrated into the traditional system of medicine for the treatment of cancer. The traditional system of medicine is a routine practiced among the indigenous ethnic groups of Sokoto state. A semi-structured questionnaire was designed and used for data collection around the selected Local Government Areas. A substantial number of plant species were identified, recorded, and collected for preservation. Data collected for each specie was analysed to assess its frequent use among the medicinal plants. A total of 67 species belonging to 31 families have been identified and recorded. Out of the 473 frequency of citation (FC), Acacia nilotica was the most frequently cited specie (32 FC, 64% FC, 0.6 RFC), followed by Guiera senegalensis (27 FC, 54% FC, 0.5 RFC), Erythrina sigmoidea (17 FC, 34% FC, 0.3 RFC), and subsequently Combretum camporum (15 FC, 30% FC, 0.3 RFC). The most common parts of the plants used include the barks (55.2%), the roots (53.2%), and the leaves (41.8%). Additionally, decoction (74.6%), powdered form (49.3%), and maceration (46.3%) are the most frequently used mode of preparation. The historical knowledge of a traditional system of medicine practiced by the native traditional healers of Sokoto for the treatment of cancer has been documented. The present study further provides a baseline for future pharmacological investigations into the beneficial effects of such medicinal plants for the treatment of cancer.

10.
Heliyon ; 5(6): e01905, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31297461

RESUMEN

Sickle cell anaemia is a hereditary disease branded by an upsurge in generation of ROS, irregular iron release and little or no antioxidant activity which can lead to cellular injuries due to oxidative stress resulting in severe symptoms including anaemia and pain. The disease is caused by a mutated version of the gene that helps make haemoglobin, the protein that carries oxygen in red blood cells. We used in silico and in vitro experiments to examine the antisickling effects of rutin for the first time by means of before and after induction approaches in sickle erythrocytes. Rutin was docked against deoxy-haemoglobin and 2,3-bisphosphoglycerate mutase, revealing binding energies (-27.329 and -25.614 kcal/mol) and Ki of 0.989µM and 0.990 µM at their catalytic sites through strong hydrophobic and hydrogen bond interactions. Sickling was thereafter, induced at 3 h with 2% metabisulphite. Rutin prevented sickling maximally at 12.3µM and reversed same at 16.4µM, by 78.5% and 69.9%, one-to-one. Treatment with rutin significantly (P < 0.05) reinvented the integrity of erythrocytes membrane as evident from the practical % haemolysis compared to induced erythrocytes. Rutin also significantly (P < 0.05) prevented and reversed lipid peroxidation relative to untreated. Likewise, GSH, CAT levels were observed to significantly (P < 0.05) increase with concomitant significant (P < 0.05) decrease in SOD activity based on administration of rutin after sickling induction approach. Furthermore, FTIR results showed that treatment with rutin favourably altered the functional chemistry, umpiring from shifts and functional groups observed. It can thus be deduced that, antisickling effects of rutin may be associated with modulation of deoxy-haemoglobin, 2,3-bisphosphoglycerate mutase, alteration of redox homeostasis and functional chemistry of sickle erythrocytes.

11.
Biomed Pharmacother ; 107: 571-582, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30114641

RESUMEN

Breast cancer as a multifactorial disease has been classified among the major causes of morbidity and mortality in women across the world, with a higher prevalence among post-menopausal women. Osteoporosis, a condition characterized by altered bone mineralization is also commonly found among post-menopausal women. Consequently, post-menopausal women are at risk of morbidity and mortality associated with breast cancer and postmenopausal osteoporosis. This may not be unconnected to the fact that, there may be existent biochemical links between the two mayhems, which might rally round between the cellular and molecular connectivity based on the actions and inactions of RANKL, estrogen, free radicals-induced oxidative stress and metabolic implications of age related obesity among others. Cells and tissues including breast and bone are more prone to oxidative stress with age, and oxidative stress could alter the activity of key proteins and pathways required for protection against breast cancer and osteoporosis. As a result, the potentials of antioxidant rich functional foods in preventing, managing and possibly treating breast cancer and postmenopausal osteoporosis cannot be overemphasised. This review mainly uses ISI, SCOPUS and PubMed indexed journals and books containing various experimental reports vacillating from humans, animals and in vitro studies in relation to breast cancer and postmenopausal osteoporosis, biochemical links and possible beneficial effects of functional foods. One distinct feature of the review is that it categorically intends to provide a critical appraisal on the said available experimental data within the variables of breast cancer and osteoporosis among females vis-à-vis the potentials of functional foods.


Asunto(s)
Neoplasias de la Mama/complicaciones , Alimentos Funcionales , Osteoporosis Posmenopáusica/complicaciones , Femenino , Humanos , Osteoporosis Posmenopáusica/genética
12.
J Ethnopharmacol ; 224: 45-62, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-29803568

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Alpinia officinarum Hance is a perennial plant that has been traditionally used for many decades to treat several ailments including inflammation, pain, stomach-ache, cold, amongst others. Pharmacological studies over the years have demonstrated remarkable bioactivities that could be further explored for development of new therapeutic agents against various ailments. AIM OF THE STUDY: The paper critically reviewed the ethno-medicinal uses, pharmacology, and phytochemistry of A. officinarum. METHODS: Keywords including A. officinarum and its synonyms were searched using electronic databases including ISI web of knowledge, Science direct, Scopus, PubMed, Google scholar and relevant database for Masters and Doctoral theses. RESULTS: A. officinarum is prepared in Asia, Turkey, Morocco and Iran as a decoction, infusion or juice as a single preparation or in combination with other herbs, food or drinks for the treatment of general health problems including cold, inflammation, digestive disorders, etc. Pharmacological studies revealed the potent in vitro and in vivo bioactivities of various parts of A. officinarum that include anti-inflammatory, cytotoxicity, homeostasis, lipid regulation, antioxidant, antiviral, antimicrobial, antiosteoporosis, etc. Over 90 phytochemical constituents have been identified and isolated from A. officinarum comprising vastly of phenolic compounds especially diarylheptanoids isolated from the rhizome and considered the most active bioactive components. CONCLUSION: In vitro and in vivo studies have confirmed the potency of A. officinarum. However, further studies are required to establish the mechanisms mediating its bioactivities in relation to the medicinal uses as well as investigating any potential toxicity for future clinical studies.


Asunto(s)
Alpinia , Medicina Tradicional , Fitoterapia , Alpinia/química , Animales , Humanos , Fitoquímicos/análisis , Fitoquímicos/farmacología , Preparaciones de Plantas/análisis , Preparaciones de Plantas/farmacología
13.
Trop Life Sci Res ; 29(1): 229-238, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29644026

RESUMEN

Recent studies suggested that combined treatment approaches can be used to improve anticancer potency and circumvent the limitations of high-dose tocotrienols administration. Acalypha wilkesiana is a medicinal plant that has been used as an adjunct treatment for cancers in traditional medicine. Herein, the effects of single and combined treatments of ß-, γ- and δ-tocotrienols and ethyl acetate extract (9EA) of Acalypha wilkesiana on lung (A549) and brain (U87MG) cancer cells were investigated. γ- and δ-tocotrienols exhibited higher potent antiproliferative effects against A549 (12.1 µg/ml and 13.6 µg/ml) and U87MG cells (3.3 µg/ml and 5.2 µg/ml) compared to ß-tocotrienols (9.4 µg/ml and 92.4 µg/ml), respectively. Whereas, 9EA induced potent antiproliferative effects against U87MG cells only (2.0 µg/ml). Combined treatments of tocotrienols and 9EA induced a synergistic growth inhibition with up to 8.4-fold reduction in potent doses of ß-, γ- and δ-tocotrienols on A549 cells. Apoptotic features were also evidenced on A549 cells receiving single and combined treatments. The synergism may greatly improve the therapeutic outcome for lung cancer.

14.
Phytomedicine ; 30: 74-84, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28545672

RESUMEN

BACKGROUND: γ-Tocotrienol, a vitamin E isomer possesses pronounced in vitro anticancer activities. However, the in vivo potency has been limited by hardly achievable therapeutic levels owing to inefficient high-dose oral delivery which leads to subsequent metabolic degradation. Jerantinine A, an Aspidosperma alkaloid, originally isolated from Tabernaemontana corymbosa, has proved to possess interesting anticancer activities. However, jerantinine A also induces toxicity to non-cancerous cells. PURPOSE: We adopted a combinatorial approach with the joint application of γ-tocotrienol and jerantinine A at lower concentrations in order to minimize toxicity towards non-cancerous cells while improving the potency on brain cancer cells. METHODS: The antiproliferative potency of individual γ-tocotrienol and jerantinine A as well as combined in low-concentration was firstly evaluated on U87MG cancer and MRC5 normal cells. Morphological changes, DNA damage patterns, cell cycle arrests and the effects of individual and combined low-concentration compounds on microtubules were then investigated. Finally, the potential roles of caspase enzymes and apoptosis-related proteins in mediating the apoptotic mechanisms were investigated using apoptosis antibody array, ELISA and Western blotting analysis. RESULTS: Combinatorial study between γ-tocotrienol at a concentration range (0-24µg/ml) and fixed IC20 concentration of jerantinine A (0.16µg/ml) induced a potent antiproliferative effect on U87MG cells and led to a reduction on the new half maximal inhibitory concentration of γ-tocotrienol (i.e.tIC50=1.29µg/ml) as compared to that of individual γ-tocotrienol (i.e. IC50=3.17µg/ml). A reduction on undesirable toxicity to MRC5 normal cells was also observed. G0/G1 cell cycle arrest was evident on U87MG cells receiving IC50 of individual γ-tocotrienol and combined low-concentration compounds (1.29µg/ml γ-tocotrienol + 0.16µg/ml jerantinine A), whereas, a profound G2/M arrest was evident on cells treated with IC50 of individual jerantinine A. Additionally, individual jerantinine A and combined compounds (except individual γ-tocotrienol) caused a disruption of microtubule networks triggering Fas- and p53-induced apoptosis mediated via the death receptor and mitochondrial pathways. CONCLUSIONS: These findings demonstrated that the combined use of lower concentrations of γ-tocotrienol and jerantinine A induced potent cytotoxic effects on U87MG cancer cells resulting in a reduction on the required individual concentrations and thereby minimizing toxicity of jerantinine A towards non-cancerous MRC5 cells as well as probably overcoming the high-dose limiting application of γ-tocotrienol. The multi-targeted mechanisms of action of the combination approach have shown a therapeutic potential against brain cancer in vitro and therefore, further in vivo investigations using a suitable animal model should be the way forward.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Antineoplásicos Fitogénicos/administración & dosificación , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromanos/administración & dosificación , Cromanos/efectos adversos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Alcaloides Indólicos/administración & dosificación , Concentración 50 Inhibidora , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Vitamina E/administración & dosificación , Vitamina E/efectos adversos , Vitamina E/análogos & derivados
15.
Sci Rep ; 6: 32808, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27597657

RESUMEN

Metastasis of lung carcinoma to breast and vice versa accounts for one of the vast majority of cancer deaths. Synergistic treatments are proven to be the effective method to inhibit malignant cell proliferation. It is highly advantageous to use the minimum amount of a potent toxic drug, such as paclitaxel (Ptx) in ng/ml together with a natural and safe anticancer drug, curcumin (Cur) to reduce the systemic toxicity. However, both Cur and Ptx suffer from poor bioavailability. Herein, a drug delivery cargo was engineered by functionalizing reduced graphene oxide (G) with an amphiphilic polymer, PF-127 (P) by hydrophobic assembly. The drugs were loaded via pi-pi interactions, resulting in a nano-sized GP-Cur-Ptx of 140 nm. A remarkably high Cur loading of 678 wt.% was achieved, the highest thus far compared to any other Cur nanoformulations. Based on cell proliferation assay, GP-Cur-Ptx is a synergistic treatment (CI < 1) and is highly potent towards lung, A549 (IC50 = 13.24 µg/ml) and breast, MDA-MB-231 (IC50 = 1.450 µg/ml) cancer cells. These positive findings are further confirmed by increased reactive oxygen species, mitochondrial membrane potential depletion and cell apoptosis. The same dose treated on normal MRC-5 cells shows that the system is biocompatible and cancerous cell-specific.


Asunto(s)
Antineoplásicos/química , Curcumina/química , Grafito/química , Óxidos/química , Paclitaxel/química , Polímeros/química , Células A549 , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Curcumina/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Sinergismo Farmacológico , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nanopartículas/química , Paclitaxel/farmacología , Especies Reactivas de Oxígeno/metabolismo
16.
J Ethnopharmacol ; 184: 107-18, 2016 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-26947901

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Tabernaemontana has widespread distribution throughout tropical and subtropical parts of the world, i.e. Africa, Asia and America which has long been used for treatments of different disease conditions including tumours, wounds, syphilis, stomach ache and headache. Some Tabernaemontana species are used for treatment of piles, spleen and abdominal tumours in India. In particular, the leaf of Tabernaemontana corymbosa is used for treatment of tumours in Bangladesh. Parts of the plant or whole plants are used as decoctions, steam bath, powder and ointments. AIM OF STUDY: The present study was undertaken to study the mechanism of apoptosis induction in human glioblastoma (U87MG) and colorectal adenocarcinoma (HT-29) cancer cells by a novel indole alkaloid, jerantinine B isolated from T. corymbosa, δ-tocotrienol and the combined low-dose treatments of δ-tocotrienol with IC20 dose of jerantinine B. MATERIALS AND METHODS: Cell viability, isobologram and combinational index (CI) analyses were used to determine the pharmacological interaction between combined treatments based on the IC50 values obtained. Fluorescence and histochemical staining techniques as well as comet assay were used for evaluating the morphological changes and DNA damage pattern, respectively. The effects of treatments on microtubules, caspase activity and cell death were determined using immunofluorescence technique, caspase colorimetric and neutral red uptake assays, respectively. RESULTS: Jerantinine B, δ-tocotrienol and combined low-dose treatments induced a dose-dependent growth inhibition against U87MG and HT-29 cells selectively with less toxicity acted towards the normal MRC5 cells. Synergistic growth inhibition observed with CI values of 0.85 and 0.77 for U87MG and HT-29 cells, resulting in up to 2-fold and 3.8-fold dose reduction of δ-tocotrienol and jerantinine B, respectively. U87MG and HT-29 cells exhibited morphological features of apoptosis and double stranded DNA breaks. Individual and combined treatments induced caspase 8 and 3 activities and cell death independent of caspase activation on U87MG and HT-29 cells. An increased caspase 9 activity was also evident on U87MG and HT-29 treated with combined treatments and HT-29 cells treated with jerantinine B. Jerantinine B and combined low-dose treatments with δ-tocotrienol undoubtedly disrupted the microtubule networks. CONCLUSION: The present study demonstrated the mechanism for cytotoxic potency of δ-tocotrienol and jerantinine B against U87MG and HT-29 cells. Furthermore, combined low-dose treatments induced concurrent synergistic inhibition of cancer cell growth with concomitant dose reduction thus minimizing toxicity to normal cells and improving potency of δ-tocotrienol and jerantinine B.


Asunto(s)
Antineoplásicos/farmacología , Alcaloides Indólicos/farmacología , Vitamina E/análogos & derivados , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Caspasas/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Daño del ADN , Sinergismo Farmacológico , Humanos , Tabernaemontana , Vitamina E/farmacología
17.
J Pharm Pharmacol ; 68(4): 423-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26887962

RESUMEN

OBJECTIVES: Tabernaemontana is a genus from the plant family, Apocynaceae with vast medicinal application and widespread distribution in the tropics and subtropics of Africa, Americas and Asia. The objective of this study is to critically evaluate the ethnobotany, medicinal uses, pharmacology and phytochemistry of the species, Tabernaemontana corymbosa (Roxb. ex Wall.) and provide information on the potential future application of alkaloids isolated from different parts of the plant. KEY FINDINGS: T. corymbosa (Roxb. ex Wall.) parts are used as poultice, boiled juice, decoctions and infusions for treatment against ulceration, fracture, post-natal recovery, syphilis, fever, tumours and orchitis in Malaysia, China, Thailand and Bangladesh. Studies recorded alkaloids as the predominant phytochemicals in addition to phenols, saponins and sterols with vast bioactivities such as antimicrobial, analgesic, anthelmintic, vasorelaxation, antiviral and cytotoxicity. SUMMARY: An evaluation of scientific data and traditional medicine revealed the medicinal uses of different parts of T. corymbosa (Roxb. ex Wall.) across Asia. Future studies exploring the structure-bioactivity relationship of alkaloids such as jerantinine and vincamajicine among others could potentially improve the future application towards reversing anticancer drug resistance.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Etnobotánica , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Tabernaemontana/química , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fitoquímicos/aislamiento & purificación , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Vincristina/farmacología
18.
Int J Nanomedicine ; 10: 1505-19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25759577

RESUMEN

PURPOSE: A simple, one-pot strategy was used to synthesize reduced graphene oxide (RGO) nanosheets by utilizing an easily available over-the-counter medicinal and edible mushroom, Ganoderma lucidum. METHODS: The mushroom was boiled in hot water to liberate the polysaccharides, the extract of which was then used directly for the reduction of graphene oxide. The abundance of polysaccharides present in the mushroom serves as a good reducing agent. The proposed strategy evades the use of harmful and expensive chemicals and avoids the typical tedious reaction methods. RESULTS: More importantly, the mushroom extract can be easily separated from the product without generating any residual byproducts and can be reused at least three times with good conversion efficiency (75%). It was readily dispersible in water without the need of ultrasonication or any surfactants; whereas 5 minutes of ultrasonication with various solvents produced RGO which was stable for the tested period of 1 year. Based on electrochemical measurements, the followed method did not jeopardize RGO's electrical conductivity. Moreover, the obtained RGO was highly biocompatible to not only colon (HT-29) and brain (U87MG) cancer cells, but was also viable towards normal cells (MRC-5). CONCLUSION: Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of functionalization.


Asunto(s)
Agaricales , Materiales Biocompatibles , Grafito/química , Nanoestructuras/química , Óxidos/química , Agaricales/química , Agaricales/metabolismo , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Productos Biológicos , Tecnología Química Verde , Nanotecnología
19.
Nat Prod Res ; 29(22): 2137-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25515603

RESUMEN

Tocotrienols have been reported to possess anticancer effects other than anti-inflammatory and antioxidant activities. This study explored the potential synergism of antiproliferative effects induced by individual alkaloid extracts of Ficus fistulosa, Ficus hispida and Ficus schwarzii combined with δ- and γ-tocotrienols against human brain glioblastoma (U87MG), lung adenocarcinoma (A549) and colorectal adenocarcinoma (HT-29) cells. Cell viability and morphological results demonstrated that extracts containing a mixture of alkaloids from the leaves and bark of F. schwarzii inhibited the proliferation of HT-29 cells, whereas the alkaloid extracts of F. fistulosa inhibited the proliferation of both U87MG and HT-29 cells and showed synergism in combined treatments with either δ- or γ-tocotrienol resulting in 2.2-34.7 fold of reduction in IC50 values of tocotrienols. The observed apoptotic cell characteristics in conjunction with the synergistic antiproliferative effects of Ficus species-derived alkaloids and tocotrienols assuredly warrant future investigations towards the development of a value-added chemotherapeutic regimen against cancers.


Asunto(s)
Alcaloides/farmacología , Ficus/química , Extractos Vegetales/farmacología , Aceites de Plantas/química , Tocotrienoles/farmacología , Alcaloides/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Aceite de Palma , Corteza de la Planta/química , Hojas de la Planta/química , Tocotrienoles/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...