Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768805

RESUMEN

The YTH-domain family (YTHDF) of RNA binding proteins can control gene expression at the post-transcriptional level by regulating mRNAs with N6-methyladenosine (m6A) modifications. Despite the established importance of m6A in the heart, the cardiac role of specific m6A-binding proteins remains unclear. Here, we characterized the function of YTHDF1 in cardiomyocytes using a newly generated cardiac-restricted mouse model. Deletion of YTHDF1 in adult cardiomyocytes led to hypertrophy, fibrosis, and dysfunction. Using mass spectrometry, we identified the necessity of YTHDF1 for the expression of cardiomyocyte membrane raft proteins. Specifically, YTHDF1 bound to m6A-modified Caveolin 1 (Cav1) mRNA and favored its translation. We further demonstrated that YTHDF1 regulates downstream ERK signaling. Altogether, our findings highlight a novel role for YTHDF1 as a post-transcriptional regulator of caveolar proteins which is necessary for the maintenance of cardiac function.

3.
Pharmacol Ther ; 257: 108638, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548089

RESUMEN

Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.


Asunto(s)
Cardiopatías Congénitas , Miocardio , Humanos , Miocardio/metabolismo , Corazón , Pericardio , Transducción de Señal , Cardiopatías Congénitas/metabolismo , Regeneración , Epigénesis Genética , Miocitos Cardíacos
4.
Nat Commun ; 15(1): 2176, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467649

RESUMEN

The regulation of proteostasis is fundamental for maintenance of muscle mass and function. Activation of the TGF-ß pathway drives wasting and premature aging by favoring the proteasomal degradation of structural muscle proteins. Yet, how this critical post-translational mechanism is kept in check to preserve muscle health remains unclear. Here, we reveal the molecular link between the post-transcriptional regulation of m6A-modified mRNA and the modulation of SMAD-dependent TGF-ß signaling. We show that the m6A-binding protein YTHDF2 is essential to determining postnatal muscle size. Indeed, muscle-specific genetic deletion of YTHDF2 impairs skeletal muscle growth and abrogates the response to hypertrophic stimuli. We report that YTHDF2 controls the mRNA stability of the ubiquitin ligase ASB2 with consequences on anti-growth gene program activation through SMAD3. Our study identifies a post-transcriptional to post-translational mechanism for the coordination of gene expression in muscle.


Asunto(s)
Proteostasis , Factores de Transcripción , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Factor de Crecimiento Transformador beta/metabolismo , Músculos/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo
6.
JACC Basic Transl Sci ; 8(9): 1180-1194, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37791304

RESUMEN

How post-transcriptional regulation of gene expression, such as through N6-methyladenosine (m6A) messenger RNA methylation, impacts heart function is not well understood. We found that loss of the m6A binding protein YTHDF2 in cardiomyocytes of adult mice drove cardiac dysfunction. By proteomics, we found myocardial zonula adherens protein (MYZAP) within the top up-regulated proteins in knockout cardiomyocytes. We further demonstrated that YTHDF2 binds m6A-modified Myzap messenger RNA and controls its stability. Cardiac overexpression of MYZAP has been associated with cardiomyopathy. Thus, our findings provide an important new mechanism for the YTHDF2-dependent regulation of this target and therein its novel role in the maintenance of cardiac homeostasis.

7.
Basic Res Cardiol ; 118(1): 15, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138037

RESUMEN

Calcium transfer into the mitochondrial matrix during sarcoplasmic reticulum (SR) Ca2+ release is essential to boost energy production in ventricular cardiomyocytes (VCMs) and match increased metabolic demand. Mitochondria from female hearts exhibit lower mito-[Ca2+] and produce less reactive oxygen species (ROS) compared to males, without change in respiration capacity. We hypothesized that in female VCMs, more efficient electron transport chain (ETC) organization into supercomplexes offsets the deficit in mito-Ca2+ accumulation, thereby reducing ROS production and stress-induced intracellular Ca2+ mishandling. Experiments using mitochondria-targeted biosensors confirmed lower mito-ROS and mito-[Ca2+] in female rat VCMs challenged with ß-adrenergic agonist isoproterenol compared to males. Biochemical studies revealed decreased mitochondria Ca2+ uniporter expression and increased supercomplex assembly in rat and human female ventricular tissues vs male. Importantly, western blot analysis showed higher expression levels of COX7RP, an estrogen-dependent supercomplex assembly factor in female heart tissues vs males. Furthermore, COX7RP was decreased in hearts from aged and ovariectomized female rats. COX7RP overexpression in male VCMs increased mitochondrial supercomplexes, reduced mito-ROS and spontaneous SR Ca2+ release in response to ISO. Conversely, shRNA-mediated knockdown of COX7RP in female VCMs reduced supercomplexes and increased mito-ROS, promoting intracellular Ca2+ mishandling. Compared to males, mitochondria in female VCMs exhibit higher ETC subunit incorporation into supercomplexes, supporting more efficient electron transport. Such organization coupled to lower levels of mito-[Ca2+] limits mito-ROS under stress conditions and lowers propensity to pro-arrhythmic spontaneous SR Ca2+ release. We conclude that sexual dimorphism in mito-Ca2+ handling and ETC organization may contribute to cardioprotection in healthy premenopausal females.


Asunto(s)
Miocitos Cardíacos , Retículo Sarcoplasmático , Ratas , Masculino , Femenino , Animales , Humanos , Anciano , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caracteres Sexuales , Mitocondrias/metabolismo , Señalización del Calcio , Calcio/metabolismo
8.
Mol Ther Methods Clin Dev ; 28: 344-354, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36874243

RESUMEN

Micro-dystrophin gene replacement therapies for Duchenne muscular dystrophy (DMD) are currently in clinical trials, but have not been thoroughly investigated for their efficacy on cardiomyopathy progression to heart failure. We previously validated Fiona/dystrophin-utrophin-deficient (dko) mice as a DMD cardiomyopathy model that progresses to reduced ejection fraction indicative of heart failure. Adeno-associated viral (AAV) vector delivery of an early generation micro-dystrophin prevented cardiac pathology and functional decline through 1 year of age in this new model. We now show that gene therapy using a micro-dystrophin optimized for skeletal muscle efficacy (AAV-µDys5), and which is currently in a clinical trial, is able to fully prevent cardiac pathology and cardiac strain abnormalities and maintain normal (>45%) ejection fraction through 18 months of age in Fiona/dko mice. Early treatment with AAV-µDys5 prevents inflammation and fibrosis in Fiona/dko hearts. Collagen in cardiac fibrotic scars becomes more tightly packed from 12 to 18 months in Fiona/dko mice, but the area of fibrosis containing tenascin C does not change. Increased tight collagen correlates with unexpected improvements in Fiona/dko whole-heart function that maintain impaired cardiac strain and strain rate. This study supports micro-dystrophin gene therapy as a promising intervention for preventing DMD cardiomyopathy progression.

9.
J Cardiovasc Aging ; 3(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38235059

RESUMEN

Introduction: Mice harboring a D257A mutation in the proofreading domain of the mitochondrial DNA polymerase, Polymerase Gamma (POLG), experience severe metabolic dysfunction and display hallmarks of accelerated aging. We previously reported a mitochondrial unfolded protein response (UPTmt) - like (UPRmt-like) gene and protein expression pattern in the right ventricular tissue of POLG mutant mice. Aim: We sought to determine if POLG mutation altered the expression of genes encoded by the mitochondria in a way that might also reduce proteotoxic stress. Methods and Results: The expression of genes encoded by the mitochondrial DNA was interrogated via RNA-seq and northern blot analysis. A striking, location-dependent effect was seen in the expression of mitochondrial-encoded tRNAs in the POLG mutant as assayed by RNA-seq. These expression changes were negatively correlated with the tRNA partner amino acid's amyloidogenic potential. Direct measurement by northern blot was conducted on candidate mt-tRNAs identified from the RNA-seq. This analysis confirmed reduced expression of MT-TY in the POLG mutant but failed to show increased expression of MT-TP, which was dramatically increased in the RNA-seq data. Conclusion: We conclude that reduced expression of amyloid-associated mt-tRNAs is another indication of adaptive response to severe mitochondrial dysfunction in the POLG mutant. Incongruence between RNA-seq and northern blot measurement of MT-TP expression points towards the existence of mt-tRNA post-transcriptional modification regulation in the POLG mutant that alters either polyA capture or cDNA synthesis in RNA-seq library generation. Together, these data suggest that 1) evolution has distributed mt-tRNAs across the circular mitochondrial genome to allow chromosomal location-dependent mt-tRNA regulation (either by expression or PTM) and 2) this regulation is cognizant of the tRNA partner amino acid's amyloidogenic properties.

10.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36040807

RESUMEN

Mineralocorticoid receptor antagonists (MRAs) slow cardiomyopathy in patients with Duchenne muscular dystrophy (DMD) and improve skeletal muscle pathology and function in dystrophic mice. However, glucocorticoids, known antiinflammatory drugs, remain a standard of care for DMD, despite substantial side effects. Exact mechanisms underlying mineralocorticoid receptor (MR) signaling contribution to dystrophy are unknown. Whether MRAs affect inflammation in dystrophic muscles and how they compare with glucocorticoids is unclear. The MRA spironolactone and glucocorticoid prednisolone were each administered for 1 week to dystrophic mdx mice during peak skeletal muscle necrosis to compare effects on inflammation. Both drugs reduced cytokine levels in mdx quadriceps, but prednisolone elevated diaphragm cytokines. Spironolactone did not alter myeloid populations in mdx quadriceps or diaphragms, but prednisolone increased F4/80hi macrophages. Both spironolactone and prednisolone reduced inflammatory gene expression in myeloid cells sorted from mdx quadriceps, while prednisolone additionally perturbed cell cycle genes. Spironolactone also repressed myeloid expression of the gene encoding fibronectin, while prednisolone increased its expression. Overall, spironolactone exhibits antiinflammatory properties without altering leukocyte distribution within skeletal muscles, while prednisolone suppresses quadriceps cytokines but increases diaphragm cytokines and pathology. Antiinflammatory properties of MRAs and different limb and respiratory muscle responses to glucocorticoids should be considered when optimizing treatments for patients with DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Miositis , Animales , Citocinas/metabolismo , Fibronectinas/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Inflamación/metabolismo , Ratones , Ratones Endogámicos mdx , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Prednisolona/metabolismo , Prednisolona/farmacología , Prednisolona/uso terapéutico , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapéutico , Espironolactona/metabolismo , Espironolactona/farmacología , Espironolactona/uso terapéutico
12.
Sci Adv ; 8(19): eabm5371, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35544568

RESUMEN

Cardiac dysfunction is a common complication of severe influenza virus infection, but whether this occurs due to direct infection of cardiac tissue or indirectly through systemic lung inflammation remains unclear. To test the etiology of this aspect of influenza disease, we generated a novel recombinant heart-attenuated influenza virus via genome incorporation of target sequences for miRNAs expressed in cardiomyocytes. Compared with control virus, mice infected with miR-targeted virus had significantly reduced heart viral titers, confirming cardiac attenuation of viral replication. However, this virus was fully replicative in the lungs and induced similar systemic inflammation and weight loss compared to control virus. The miR-targeted virus induced fewer cardiac conduction irregularities and significantly less fibrosis in mice lacking interferon-induced transmembrane protein 3 (IFITM3), which serve as a model for influenza-associated cardiac pathology. We conclude that robust virus replication in the heart is required for pathology, even when lung inflammation is severe.


Asunto(s)
Gripe Humana , MicroARNs , Animales , Fibrosis , Humanos , Ratones , MicroARNs/genética , Miocitos Cardíacos , Replicación Viral/genética
13.
PLoS Pathog ; 18(2): e1010342, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192678

RESUMEN

Viral infection of the heart is a common but underappreciated cause of heart failure. Viruses can cause direct cardiac damage by lysing infected cardiomyocytes. Inflammatory immune responses that limit viral replication can also indirectly cause damage during infection, making regulatory factors that fine-tune these responses particularly important. Identifying and understanding these factors that regulate cardiac immune responses during infection will be essential for developing targeted treatments for virus-associated heart failure. Our laboratory has discovered Brain Expressed X-linked protein 1 (BEX1) as a novel stress-regulated pro-inflammatory factor in the heart. Here we report that BEX1 plays a cardioprotective role in the heart during viral infection. Specifically, we adopted genetic gain- and loss-of-function strategies to modulate BEX1 expression in the heart in the context of coxsackievirus B3 (CVB3)-induced cardiomyopathy and found that BEX1 limits viral replication in cardiomyocytes. Interestingly, despite the greater viral load observed in mice lacking BEX1, inflammatory immune cell recruitment in the mouse heart was profoundly impaired in the absence of BEX1. Overall, the absence of BEX1 accelerated CVB3-driven heart failure and pathologic heart remodeling. This result suggests that limiting inflammatory cell recruitment has detrimental consequences for the heart during viral infections. Conversely, transgenic mice overexpressing BEX1 in cardiomyocytes revealed the efficacy of BEX1 for counteracting viral replication in the heart in vivo. We also found that BEX1 retains its antiviral role in isolated cells. Indeed, BEX1 was necessary and sufficient to counteract viral replication in both isolated primary cardiomyocytes and mouse embryonic fibroblasts suggesting a broader applicability of BEX1 as antiviral agent that extended to viruses other than CVB3, including Influenza A and Sendai virus. Mechanistically, BEX1 regulated interferon beta (IFN-ß) expression in infected cells. Overall, our study suggests a multifaceted role of BEX1 in the cardiac antiviral immune response.


Asunto(s)
Infecciones por Coxsackievirus , Insuficiencia Cardíaca , Miocarditis , Virosis , Animales , Antivirales/farmacología , Enterovirus Humano B , Fibroblastos , Ratones , Miocitos Cardíacos , Virosis/genética , Replicación Viral
14.
Cells ; 11(4)2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35203314

RESUMEN

Zonula occludens-1 (ZO-1) is an intracellular scaffolding protein that orchestrates the anchoring of membrane proteins to the cytoskeleton in epithelial and specialized tissue including the heart. There is clear evidence to support the central role of intracellular auxiliary proteins in arrhythmogenesis and previous studies have found altered ZO-1 expression associated with atrioventricular conduction abnormalities. Here, using human cardiac tissues, we identified all three isoforms of ZO-1, canonical (Transcript Variant 1, TV1), CRA_e (Transcript Variant 4, TV4), and an additionally expressed (Transcript Variant 3, TV3) in non-failing myocardium. To investigate the role of ZO-1 on ventricular arrhythmogenesis, we generated a haploinsufficient ZO-1 mouse model (ZO-1+/-). ZO-1+/- mice exhibited dysregulated connexin-43 protein expression and localization at the intercalated disc. While ZO-1+/- mice did not display abnormal cardiac function at baseline, adrenergic challenge resulted in rhythm abnormalities, including premature ventricular contractions and bigeminy. At baseline, ventricular myocytes from the ZO-1+/- mice displayed prolonged action potential duration and spontaneous depolarizations, with ZO-1+/- cells displaying frequent unsolicited (non-paced) diastolic depolarizations leading to spontaneous activity with multiple early afterdepolarizations (EADs). Mechanistically, ZO-1 deficient myocytes displayed a reduction in sodium current density (INa) and an increased sensitivity to isoproterenol stimulation. Further, ZO-1 deficient myocytes displayed remodeling in ICa current, likely a compensatory change. Taken together, our data suggest that ZO-1 deficiency results in myocardial substrate susceptible to triggered arrhythmias.


Asunto(s)
Miocardio , Uniones Estrechas , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Sodio/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
15.
Nat Commun ; 13(1): 168, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013323

RESUMEN

Skeletal muscle serves fundamental roles in organismal health. Gene expression fluctuations are critical for muscle homeostasis and the response to environmental insults. Yet, little is known about post-transcriptional mechanisms regulating such fluctuations while impacting muscle proteome. Here we report genome-wide analysis of mRNA methyladenosine (m6A) dynamics of skeletal muscle hypertrophic growth following overload-induced stress. We show that increases in METTL3 (the m6A enzyme), and concomitantly m6A, control skeletal muscle size during hypertrophy; exogenous delivery of METTL3 induces skeletal muscle growth, even without external triggers. We also show that METTL3 represses activin type 2 A receptors (ACVR2A) synthesis, blunting activation of anti-hypertrophic signaling. Notably, myofiber-specific conditional genetic deletion of METTL3 caused spontaneous muscle wasting over time and abrogated overload-induced hypertrophy; a phenotype reverted by co-administration of a myostatin inhibitor. These studies identify a previously unrecognized post-transcriptional mechanism promoting the hypertrophic response of skeletal muscle via control of myostatin signaling.


Asunto(s)
Receptores de Activinas Tipo II/genética , Hipertrofia/genética , Metiltransferasas/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Miostatina/genética , Receptores de Activinas Tipo II/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Dependovirus/genética , Dependovirus/metabolismo , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Estudio de Asociación del Genoma Completo , Hipertrofia/metabolismo , Hipertrofia/patología , Hipertrofia/prevención & control , Masculino , Metiltransferasas/deficiencia , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Miostatina/metabolismo , Transducción de Señal
16.
Matrix Biol ; 106: 1-11, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35045313

RESUMEN

The regulation of skeletal muscle growth following pro-hypertrophic stimuli requires a coordinated response by different cell types that leads to extracellular matrix (ECM) remodeling and increases in muscle cross-sectional area. Indeed, matricellular proteins serve a key role as communication vehicles that facilitate the propagation of signaling stimuli required for muscle adaptation to environmental challenges. We found that the matricellular protein cellular communication network factor 2 (CCN2), also known as connective tissue growth factor (CTGF), is induced during a time course of overload-driven skeletal muscle hypertrophy in mice. To elucidate the role of CCN2 in mediating the hypertrophic response, we utilized genetically engineered mouse models for myofiber-specific CCN2 gain- and loss-of-function and then examined their response to mechanical stimuli through muscle overload. Interestingly, myofiber-specific deletion of CCN2 blunted muscle's hypertrophic response to overload without interfering with ECM deposition. On the other hand, when in excess through transgenic CCN2 overexpression, CCN2 was efficient in promoting overload-induced aberrant ECM accumulation without affecting myofiber growth. Altogether, our genetic approaches highlighted independent ECM and myofiber stress adaptation responses, and positioned CCN2 as a central mediator of both. Mechanistically, CCN2 acts by regulating focal adhesion kinase (FAK) mediated transduction of overload-induced extracellular signals, including interleukin 6 (IL6), and their regulatory impact on global protein synthesis in skeletal muscle. Overall, our study highlights the contribution of muscle-derived extracellular matrix factor CCN2 for proper hypertrophic muscle growth.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Matriz Extracelular , Animales , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Hipertrofia/metabolismo , Ratones , Músculo Esquelético/metabolismo , Transducción de Señal
17.
Wiley Interdiscip Rev RNA ; 13(4): e1700, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34664402

RESUMEN

Naturally occurring post-transcriptional chemical modifications serve critical roles in impacting RNA structure and function. More directly, modifications may affect RNA stability, intracellular transport, translational efficiency, and fidelity. The combination of effects caused by modifications are ultimately linked to gene expression regulation at a genome-wide scale. The latter is especially true in systems that undergo rapid metabolic and or translational remodeling in response to external stimuli, such as the presence of stressors, but beyond that, modifications may also affect cell homeostasis. Although examples of the importance of RNA modifications in translation are accumulating rapidly, still what these contribute to the function of complex physiological systems such as muscle is only recently emerging. In the present review, we will introduce key information on various modifications and highlight connections between those and cellular malfunctions. In passing, we will describe well-documented roles for modifications in the nervous system and use this information as a stepping stone to emphasize a glaring paucity of knowledge on the role of RNA modifications in heart and skeletal muscle, with particular emphasis on mitochondrial function in those systems. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN , Músculos/metabolismo , ARN/genética , ARN/metabolismo , Edición de ARN , Estabilidad del ARN , ARN de Transferencia/genética
18.
Curr Opin Physiol ; 282022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37304645

RESUMEN

Post-transcriptional modifications encompass a large group of RNA alterations that control gene expression. Methylation of the N6-Adenosine (m6A) of mRNA is a prevalent modification which alters the life cycle of transcripts. The roles that m6A play in regulating cardiac homeostasis and injury response are an active area of investigation, but it is clear that this chemical modification is a critical controller of fibroblast to myofibroblast transition, cardiomyocyte hypertrophy and division, and the structure and function of the extracellular matrix. Here we discuss the latest findings of m6A in cardiac muscle and matrix.

19.
Viruses ; 13(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34696354

RESUMEN

Viruses are an underappreciated cause of heart failure. Indeed, several types of viral infections carry cardiovascular risks. Understanding shared and unique mechanisms by which each virus compromises heart function is critical to inform on therapeutic interventions. This review describes how the key viruses known to lead to cardiac dysfunction operate. Both direct host-damaging mechanisms and indirect actions on the immune systems are discussed. As viral myocarditis is a key pathologic driver of heart failure in infected individuals, this review also highlights the role of cytokine storms and inflammation in virus-induced cardiomyopathy.


Asunto(s)
Insuficiencia Cardíaca/virología , Corazón/virología , Miocarditis/virología , Animales , Cardiomiopatías/virología , Cardiomiopatía Dilatada/virología , Síndrome de Liberación de Citoquinas , Cardiopatías/inmunología , Cardiopatías/terapia , Cardiopatías/virología , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/terapia , Humanos , Inflamación , Miocarditis/inmunología , Miocarditis/terapia , Virosis/inmunología , Virosis/terapia , Virosis/virología
20.
Mol Metab ; 54: 101343, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34583010

RESUMEN

Regulation of organismal homeostasis in response to nutrient availability is a vital physiological process that involves inter-organ communication. Understanding the mechanisms controlling systemic cross-talk for the maintenance of metabolic health is critical to counteract diet-induced obesity. Here, we show that cardiac-derived transforming growth factor beta 1 (TGF-ß1) protects against weight gain and glucose intolerance in mice subjected to high-fat diet. Secretion of TGF-ß1 by cardiomyocytes correlates with the bioavailability of this factor in circulation. TGF-ß1 prevents adipose tissue inflammation independent of body mass and glucose metabolism phenotypes, indicating protection from adipocyte dysfunction-driven immune cell recruitment. TGF-ß1 alters the gene expression programs in white adipocytes, favoring their fatty acid oxidation and consequently increasing their mitochondrial oxygen consumption rates. Ultimately, subcutaneous and visceral white adipose tissue from cadiac-specific TGF-ß1 transgenic mice fail to undergo cellular hypertrophy, leading to reduced overall adiposity during high-fat feeding. Thus, TGF-ß1 is a critical mediator of heart-fat communication for the regulation of systemic metabolism.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Miocitos Cardíacos/metabolismo , Obesidad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Femenino , Intolerancia a la Glucosa , Masculino , Ratones , Ratones Transgénicos , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA