Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 8(2): 296-309, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35037462

RESUMEN

Mycobacterium abscessus (Mab) has emerged as a challenging threat to individuals with cystic fibrosis. Infections caused by this pathogen are often impossible to treat due to the intrinsic antibiotic resistance leading to lung malfunction and eventually death. Therefore, there is an urgent need to develop new drugs against novel targets in Mab to overcome drug resistance and subsequent treatment failure. In this study, SAICAR synthetase (PurC) from Mab was identified as a promising target for novel antibiotics. An in-house fragment library screen and a high-throughput X-ray crystallographic screen of diverse fragment libraries were explored to provide crucial starting points for fragment elaboration. A series of compounds developed from fragment growing and merging strategies, guided by crystallographic information and careful hit-to-lead optimization, have achieved potent nanomolar binding affinity against the enzyme. Some compounds also show a promising inhibitory effect against Mab and Mtb. This work utilizes a fragment-based design and demonstrates for the first time the potential to develop inhibitors against PurC from Mab.


Asunto(s)
Mycobacterium abscessus , Antibacterianos/química , Antibacterianos/farmacología , Cristalografía por Rayos X , Humanos , Péptido Sintasas
2.
J Med Chem ; 65(3): 2149-2173, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35080396

RESUMEN

Pseudomonas aeruginosa is of major concern for cystic fibrosis patients where this infection can be fatal. With the emergence of drug-resistant strains, there is an urgent need to develop novel antibiotics against P. aeruginosa. MurB is a promising target for novel antibiotic development as it is involved in the cell wall biosynthesis. MurB has been shown to be essential in P. aeruginosa, and importantly, no MurB homologue exists in eukaryotic cells. A fragment-based drug discovery approach was used to target Pa MurB. This led to the identification of a number of fragments, which were shown to bind to MurB. One fragment, a phenylpyrazole scaffold, was shown by ITC to bind with an affinity of Kd = 2.88 mM (LE 0.23). Using a structure guided approach, different substitutions were synthesized and the initial fragment was optimized to obtain a small molecule with Kd = 3.57 µM (LE 0.35).


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Oxidorreductasas/antagonistas & inhibidores , Pseudomonas aeruginosa/enzimología , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Fibrosis Quística/complicaciones , Fibrosis Quística/mortalidad , Fibrosis Quística/patología , Evaluación Preclínica de Medicamentos , Humanos , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Oxidorreductasas/metabolismo , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Pirazoles/química , Pirazoles/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico
3.
Front Mol Biosci ; 8: 663301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026836

RESUMEN

Leprosy, caused by Mycobacterium leprae (M. leprae), is treated with a multidrug regimen comprising Dapsone, Rifampicin, and Clofazimine. These drugs exhibit bacteriostatic, bactericidal and anti-inflammatory properties, respectively, and control the dissemination of infection in the host. However, the current treatment is not cost-effective, does not favor patient compliance due to its long duration (12 months) and does not protect against the incumbent nerve damage, which is a severe leprosy complication. The chronic infectious peripheral neuropathy associated with the disease is primarily due to the bacterial components infiltrating the Schwann cells that protect neuronal axons, thereby inducing a demyelinating phenotype. There is a need to discover novel/repurposed drugs that can act as short duration and effective alternatives to the existing treatment regimens, preventing nerve damage and consequent disability associated with the disease. Mycobacterium leprae is an obligate pathogen resulting in experimental intractability to cultivate the bacillus in vitro and limiting drug discovery efforts to repositioning screens in mouse footpad models. The dearth of knowledge related to structural proteomics of M. leprae, coupled with emerging antimicrobial resistance to all the three drugs in the multidrug therapy, poses a need for concerted novel drug discovery efforts. A comprehensive understanding of the proteomic landscape of M. leprae is indispensable to unravel druggable targets that are essential for bacterial survival and predilection of human neuronal Schwann cells. Of the 1,614 protein-coding genes in the genome of M. leprae, only 17 protein structures are available in the Protein Data Bank. In this review, we discussed efforts made to model the proteome of M. leprae using a suite of software for protein modeling that has been developed in the Blundell laboratory. Precise template selection by employing sequence-structure homology recognition software, multi-template modeling of the monomeric models and accurate quality assessment are the hallmarks of the modeling process. Tools that map interfaces and enable building of homo-oligomers are discussed in the context of interface stability. Other software is described to determine the druggable proteome by using information related to the chokepoint analysis of the metabolic pathways, gene essentiality, homology to human proteins, functional sites, druggable pockets and fragment hotspot maps.

4.
Drug Discov Today ; 26(7): 1569-1573, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33798649

RESUMEN

Hansen's disease (HD), or leprosy, continues to be endemic in many parts of the world. Although multidrug therapy (MDT) is successful in curing a large number of patients, some of them abandon it because it is a long-term treatment. Therefore, identification of new drug targets in Mycobacterium leprae is considered of high importance. Here, we introduce an overview of in silico and in vitro studies that might be of help in this endeavor. The essentiality of M. leprae proteins is reviewed with discussion of flux balance analysis, gene expression, and knockout articles. Finally, druggability techniques are proposed for the validation of new M. leprae protein targets (see Fig. 1).


Asunto(s)
Leprostáticos/uso terapéutico , Lepra/tratamiento farmacológico , Mycobacterium leprae , Animales , Proteínas Bacterianas/genética , Simulación por Computador , Diseño de Fármacos , Ontología de Genes , Humanos , Mycobacterium leprae/genética
5.
Comput Struct Biotechnol J ; 18: 3692-3704, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304465

RESUMEN

Computational Saturation Mutagenesis is an in-silico approach that employs systematic mutagenesis of each amino acid residue in the protein to all other amino acid types, and predicts changes in thermodynamic stability and affinity to the other subunits/protein counterparts, ligands and nucleic acid molecules. The data thus generated are useful in understanding the functional consequences of mutations in antimicrobial resistance phenotypes. In this study, we applied computational saturation mutagenesis to three important drug-targets in Mycobacterium leprae (M. leprae) for the drugs dapsone, rifampin and ofloxacin namely Dihydropteroate Synthase (DHPS), RNA Polymerase (RNAP) and DNA Gyrase (GYR), respectively. M. leprae causes leprosy and is an obligate intracellular bacillus with limited protein structural information associating mutations with phenotypic resistance outcomes in leprosy. Experimentally solved structures of DHPS, RNAP and GYR of M. leprae are not available in the Protein Data Bank, therefore, we modelled the structures of these proteins using template-based comparative modelling and introduced systematic mutations in each model generating 80,902 mutations and mutant structures for all the three proteins. Impacts of mutations on stability and protein-subunit, protein-ligand and protein-nucleic acid affinities were computed using various in-house developed and other published protein stability and affinity prediction software. A consensus impact was estimated for each mutation using qualitative scoring metrics for physicochemical properties and by a categorical grouping of stability and affinity predictions. We developed a web database named HARP (a database of Hansen's Disease Antimicrobial Resistance Profiles), which is accessible at the URL - https://harp-leprosy.org and provides the details to each of these predictions.

6.
mBio ; 10(6)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772052

RESUMEN

Trehalose is an essential disaccharide for mycobacteria and a key constituent of several cell wall glycolipids with fundamental roles in pathogenesis. Mycobacteria possess two pathways for trehalose biosynthesis. However, only the OtsAB pathway was found to be essential in Mycobacterium tuberculosis, with marked growth and virulence defects of OtsA mutants and strict essentiality of OtsB2. Here, we report the first mycobacterial OtsA structures from Mycobacterium thermoresistibile in both apo and ligand-bound forms. Structural information reveals three key residues in the mechanism of substrate preference that were further confirmed by site-directed mutagenesis. Additionally, we identify 2-oxoglutarate and 2-phosphoglycerate as allosteric regulators of OtsA. The structural analysis in this work strongly contributed to define the mechanisms for feedback inhibition, show different conformational states of the enzyme, and map a new allosteric site.IMPORTANCE Mycobacterial infections are a significant source of mortality worldwide, causing millions of deaths annually. Trehalose is a multipurpose disaccharide that plays a fundamental structural role in these organisms as a component of mycolic acids, a molecular hallmark of the cell envelope of mycobacteria. Here, we describe the first mycobacterial OtsA structures. We show mechanisms of substrate preference and show that OtsA is regulated allosterically by 2-oxoglutarate and 2-phosphoglycerate at an interfacial site. These results identify a new allosteric site and provide insight on the regulation of trehalose synthesis through the OtsAB pathway in mycobacteria.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Ácidos Glicéricos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mycobacteriaceae/enzimología , Regulación Alostérica , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glucosiltransferasas/genética , Mycobacteriaceae/genética , Mycobacteriaceae/metabolismo , Especificidad por Sustrato , Trehalosa/metabolismo
7.
ACS Chem Biol ; 13(8): 2067-2073, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29897729

RESUMEN

Focal Adhesion Kinase signaling pathway and its functions have been involved in the development and aggressiveness of tumor malignancy, it then presents a promising cancer therapeutic target. Several reversible FAK inhibitors have been developed and are being conducted in clinical trials. On the other hand, irreversible covalent inhibitors would bring many desirable pharmacological features including high potency and increased duration of action. Herein we report the structure-guided development of the first highly potent and irreversible inhibitor of the FAK kinase. This inhibitor showed a very potent decrease of autophosphorylation of FAK in squamous cell carcinoma. A cocrystal structure of the FAK kinase domain in complex with this compound revealed the inhibitor binding mode within the ATP binding site and confirmed the covalent linkage between the targeted Cys427 of the protein and the inhibitor.


Asunto(s)
Diseño de Fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...