Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cytotherapy ; 26(9): 1095-1104, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38647505

RESUMEN

BACKGROUND AIMS: The production of commercial autologous cell therapies such as chimeric antigen receptor T cells requires complex manual manufacturing processes. Skilled labor costs and challenges in manufacturing scale-out have contributed to high prices for these products. METHODS: We present a robotic system that uses industry-standard cell therapy manufacturing equipment to automate the steps involved in cell therapy manufacturing. The robotic cluster consists of a robotic arm and customized modules, allowing the robot to manipulate a variety of standard cell therapy instruments and materials such as incubators, bioreactors, and reagent bags. This system enables existing manual manufacturing processes to be rapidly adapted to robotic manufacturing, without having to adopt a completely new technology platform. Proof-of-concept for the robotic cluster's expansion module was demonstrated by expanding human CD8+ T cells. RESULTS: The robotic cultures showed comparable cell yields, viability, and identity to those manually performed. In addition, the robotic system was able to maintain culture sterility. CONCLUSIONS: Such modular robotic solutions may support scale-up and scale-out of cell therapies that are developed using classical manual methods in academic laboratories and biotechnology companies. This approach offers a pathway for overcoming manufacturing challenges associated with manual processes, ultimately contributing to the broader accessibility and affordability for personalized immunotherapies.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Robótica , Humanos , Robótica/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Linfocitos T CD8-positivos/inmunología , Técnicas de Cultivo de Célula/métodos , Reactores Biológicos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos , Automatización
2.
Cancer Manag Res ; 10: 1089-1114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29785138

RESUMEN

Soft-tissue sarcomas are rare malignant tumors arising from connective tissues and have an overall incidence of about five per 100,000 per year. While this diverse family of malignancies comprises over 100 histological subtypes and many molecular aberrations are prevalent within specific sarcomas, very few are therapeutically targeted. Instead of utilizing molecular signatures, first-line sarcoma treatment options are still limited to traditional surgery and chemotherapy, and many of the latter remain largely ineffective and are plagued by disease resistance. Currently, the mechanism of sarcoma oncogenesis remains largely unknown, thus necessitating a better understanding of pathogenesis. Although substantial progress has not occurred with molecularly targeted therapies over the past 30 years, increased knowledge about sarcoma biology could lead to new and more effective treatment strategies to move the field forward. Here, we discuss biological advances in the core molecular determinants in some of the most common soft-tissue sarcomas - liposarcoma, angiosarcoma, leiomyosarcoma, rhabdomyosarcoma, Ewing's sarcoma, and synovial sarcoma - with an emphasis on emerging genomic and molecular pathway targets and immunotherapeutic treatment strategies to combat this confounding disease.

3.
Oncotarget ; 9(18): 14311-14323, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581846

RESUMEN

The Sonic Hedgehog (Shh) signaling pathway has been implicated in the development and tumor progression of a number of human cancers. Using synthetic peptide mimics to mount an immune response, we generated a mouse mAb to the carboxy (C)-terminus of the Shh protein and characterized its preclinical antitumor effects. In vitro screening guided selection of the best candidate for mAb scale-up production and therapeutic development. C-term anti-Shh, Ab 1C11-2G4 was selected based on ELISA screens, Western blotting, and flow cytometric analyses. Purified Ab 1C11-2G4 was shown to recognize and bind both Shh peptide mimics and cell surface Shh. Administration of Ab 1C11-2G4 not only reduced cell viability in 7 cancer cell lines but also significantly inhibitted tumor growth in a xenograft model of A549 lung cancer cells. Ex vivo analyses of xenograft tumors revealed a reduction in Shh signal transduction and apoptosis in 2G4-treated mice. Collectively, our results provide early demonstration of the antitumor utility of antibodies specific for the C-terminal region of Shh, and support continued development to evaluate their potential efficacy in cancers in which Shh activity is elevated.

4.
Int J Mol Sci ; 19(1)2018 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-29342862

RESUMEN

Malignant pleural mesothelioma (MPM) tumors are remarkably aggressive and most patients only survive for 5-12 months; irrespective of stage; after primary symptoms appear. Compounding matters is that MPM remains unresponsive to conventional standards of care; including radiation and chemotherapy. Currently; instead of relying on molecular signatures and histological typing; MPM treatment options are guided by clinical stage and patient characteristics because the mechanism of carcinogenesis has not been fully elucidated; although about 80% of cases can be linked to asbestos exposure. Several molecular pathways have been implicated in the MPM tumor microenvironment; such as angiogenesis; apoptosis; cell-cycle regulation and several growth factor-related pathways predicted to be amenable to therapeutic intervention. Furthermore, the availability of genomic data has improved our understanding of the pathobiology of MPM. The MPM genomic landscape is dominated by inactivating mutations in several tumor suppressor genes; such as CDKN2A; BAP1 and NF2. Given the complex heterogeneity of the tumor microenvironment in MPM; a better understanding of the interplay between stromal; endothelial and immune cells at the molecular level is required; to chaperone the development of improved personalized therapeutics. Many recent advances at the molecular level have been reported and several exciting new treatment options are under investigation. Here; we review the challenges and the most up-to-date biological advances in MPM pertaining to the molecular pathways implicated; progress at the genomic level; immunological progression of this fatal disease; and its link with developmental cell pathways; with an emphasis on prognostic and therapeutic treatment strategies.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Pulmonares/patología , Mesotelioma/patología , Neoplasias Pleurales/patología , Genes Supresores de Tumor , Genoma , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Mesotelioma/genética , Mesotelioma/inmunología , Mesotelioma Maligno , Neoplasias Pleurales/genética , Neoplasias Pleurales/inmunología , Microambiente Tumoral
5.
Oncotarget ; 8(61): 103744-103757, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29262597

RESUMEN

The mechanism of Sonic Hedgehog (Shh) pathway activation in non-small cell lung cancer (NSCLC) is poorly described. Using an antibody against the Shh C-terminal domain, we found a small population of Shh-positive (Shh+) cells in NSCLC cells. The objective of this study was to characterize these Shh+ cells. Shh+ and Shh- cells were sorted by using Fluorescence Activated Cell Sorting (FACS) on 12 commercial NSCLC cell lines. Functional analyses on sorted cells were performed with gene expression assays (qRT-PCR and microarray) and cells were treated with cytotoxic chemotherapy and a targeted inhibitor of Shh signaling (GDC0449). We used in vivo models of nude mice inoculated with Shh+ and Shh- sorted cells and drug-treated cells. Finally, we confirmed our results in fresh human NSCLC samples (n=48) paired with normal lung tissue. We found that Shh+ cells produced an uncleaved, full-length Shh protein detected on the membranes of these cells. Shh+ cells exerted a paracrine effect on Shh- cells, inducing their proliferation and migration. Shh+ cells were chemo-resistant and showed features of cancer stem cells (CSCs) in vitro and in vivo. Pharmacological inhibition of the Shh pathway suppressed their CSC features. A high percentage of Shh+ cells was associated with poor prognosis in early-stage NSCLC patients. In conclusion, we describe for the first time the presence of an abnormal membrane-bound full-length Shh protein in human cancer cells that allows the identification of CSCs in vitro and in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...