Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0301118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753646

RESUMEN

While the applicability and popularity of theta burst stimulation (TBS) paradigms remain, current knowledge of their neurobiological effects is still limited, especially with respect to their impact on glial cells and neuroinflammatory processes. We used a multimodal imaging approach to assess the effects of a clinical course of TBS on markers for microglia activation and tissue injury as an indirect assessment of neuroinflammatory processes. Healthy non-human primates received continuous TBS (cTBS), intermittent TBS (iTBS), or sham stimulation over the motor cortex at 90% of resting motor threshold. Stimulation was delivered to the awake subjects 5 times a week for 3-4 weeks. Translocator protein (TSPO) expression was evaluated using Positron Emission Tomography and [11C]PBR28, and myo-inositol (mI) and N-acetyl-aspartate (NAA) concentrations were assessed with Magnetic Resonance Spectroscopy. Animals were then euthanized, and immunofluorescence staining was performed using antibodies against TSPO. Paired t-tests showed no significant changes in [11C]PBR28 measurements after stimulation. Similarly, no significant changes in mI and NAA concentrations were found. Post-mortem TSPO evaluation showed comparable mean immunofluorescence intensity after active TBS and sham delivery. The current study suggests that in healthy brains a clinical course of TBS, as evaluated with in-vivo imaging techniques (PET and MRS), did not measurably modulate the expression of glia related markers and metabolite associated with neural viability.


Asunto(s)
Biomarcadores , Microglía , Tomografía de Emisión de Positrones , Animales , Microglía/metabolismo , Biomarcadores/metabolismo , Masculino , Receptores de GABA/metabolismo , Corteza Motora/metabolismo , Corteza Motora/diagnóstico por imagen , Macaca mulatta , Inositol/metabolismo
3.
Exp Neurol ; 354: 114106, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35526596

RESUMEN

Dopamine modulation is thought to underpin some of the therapeutic effects associated with repetitive transcranial magnetic stimulation (rTMS). However, patient studies have failed to demonstrate consistent changes in the dopamine system in vivo after a therapeutic course of rTMS. Here, we evaluated acute and chronic changes in striatal dopamine release elicited by a clinically relevant course of theta burst (TBS) or sham stimulation using [11C]raclopride in healthy non-human primates (n = 11). Subjects were scanned immediately after the first session of TBS and the day after a 3 week course of daily TBS delivery. After experiment completion, animals were euthanized, and immunofluorescence staining was carried out using antibodies targeting D2 receptors (D2R). Continuous TBS (cTBS, an inhibitory form of rTMS) over the left primary motor cortex acutely decreased dopamine release bilaterally in the putamen. However, no significant changes in dopamine receptors nor D2R immunoreactivity were noted 24 h after the last stimulation, while a decrease in cortical excitability, as measured by an increase in resting motor threshold, could still be quantified. On the opposite, intermittent TBS (iTBS, an excitatory form of rTMS) did not affect dopamine release, acutely or chronically, D2R immunoreactivity or cortical excitability. These findings suggest that the long-term therapeutic effects of TBS might be facilitated through the modulation of different neurotransmission systems beyond the dopamine system. However, given the small sample size, these results should be interpreted with caution.


Asunto(s)
Excitabilidad Cortical , Estimulación Magnética Transcraneal , Animales , Dopamina , Potenciales Evocados Motores/fisiología , Humanos , Ritmo Teta/fisiología , Estimulación Magnética Transcraneal/métodos
4.
Front Neurosci ; 16: 787403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264923

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a therapeutic tool to alleviate symptoms for neurological and psychiatric diseases such as chronic pain, stroke, Parkinson's disease, major depressive disorder, and others. Although the therapeutic potential of rTMS has been widely explored, the neurological basis of its effects is still not fully understood. Fortunately, the continuous development of imaging techniques has advanced our understanding of rTMS neurobiological underpinnings on the healthy and diseased brain. The objective of the current work is to summarize relevant findings from positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques evaluating rTMS effects. We included studies that investigated the modulation of neurotransmission (evaluated with PET and magnetic resonance spectroscopy), brain activity (evaluated with PET), resting-state connectivity (evaluated with resting-state functional MRI), and microstructure (diffusion tensor imaging). Overall, results from imaging studies suggest that the effects of rTMS are complex and involve multiple neurotransmission systems, regions, and networks. The effects of stimulation seem to not only be dependent in the frequency used, but also in the participants characteristics such as disease progression. In patient populations, pre-stimulation evaluation was reported to predict responsiveness to stimulation, while post-stimulation neuroimaging measurements showed to be correlated with symptomatic improvement. These studies demonstrate the complexity of rTMS effects and highlight the relevance of imaging techniques.

5.
Mol Imaging Biol ; 24(3): 404-415, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34622422

RESUMEN

PURPOSE: To identify a reliable alternative to the full blood [11C]PBR28 quantification method that would be easily replicated in multiple research and clinical settings. PROCEDURES: Ten [11C]PBR28 scans were acquired from 7 healthy non-human primates (NHP). Arterial input functions (AIFs) were averaged to create a population template input function (TIF). Population-based input functions were created by scaling the TIF with injected activity per body weight (PBIF) or unmetabolized tracer activity in blood at 15-,30-, and 60-min post-injection (PBIF15, PBIF30, and PBIF60). Two additional input functions were used: the native unmetabolized total plasma activity (Totals) and the Totals curve metabolite corrected by a scaled template parent fraction from a 30-min sample (TPF30-IF). Total distribution volumes (VTs) were calculated using PBIF, PBIF30, PBIF15, PBIF60, Totals, TPF30-IF, and the individual AIF (VTAIF). Distribution volume ratios (DVR) were computed using the cerebellum and the centrum semiovale (CSO), as pseudo-reference regions (DVRCereb, DVRCSO). Results obtained with each method were compared to VTAIF. Applicability of these alternative methods was tested on an independent pharmacological challenge dataset of microglial activation and depletion. Evaluation was carried at baseline, immediately after intervention (acute), and weeks post-intervention (post-recovery). RESULTS: VTs computed using PBIF15 and PBIF30 showed the best correlation to VTAIF (r > 0.90), while VT derived from the blood-free-scaled PBIF showed poor correlation (r = 0.46) and DVRCSO correlated the least (r = 0.26). In the pharmacological challenge study, most population-derived VT values were comparable to VTAIF at baseline and showed varied sensitivity to challenges at acute and post-recovery evaluation. DVR values did not detect relevant changes. CONCLUSIONS: Population-based input functions scaled with a single blood sample might be a useful alternative to using AIF to compute [11C]PBR28 binding in healthy NHPs or animals with comparable metabolism and overall perform better than pseudo-reference regions approaches.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Animales , Arterias/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Primates
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...