Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514416

RESUMEN

This study demonstrates a one-step synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) in the presence of the methyl violet (MV) dye. The structural properties of PEDOT:peroxodisulfate were studied using Raman and MALDI-TOF spectroscopies. The use of the MV dye in the polymerization process resulted in a change in the typical irregular morphology of PEDOT:peroxodisulfate, leading to the formation of spherical patterns. SEM and TEM analyses revealed that increasing the dye concentration can produce larger spherical aggregates probably due to the hydrophobic and π-π interactions. These larger aggregates hindered the charge transport and reduced the electrical conductivity. Interestingly, at higher dye concentrations (0.05 and 0.075 M), the PEDOT:peroxodisulfate/MV films exhibited significantly improved antibacterial activity against Staphylococcus aureus and Escherichia coli. Furthermore, the PEDOT:peroxodisulfate films with the incorporated MV dye exhibited a well-defined and repeatable redox behavior. The remarkable amalgamation of their optical, electrochemical and antibacterial properties provides the PEDOT:peroxodisulfate/MV materials with an immensely diverse spectrum of applications, including in optical sensors and medical devices.

2.
Gels ; 9(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37504461

RESUMEN

Three-dimensional and porous polypyrrole (PPy) aerogels were prepared using a facile two-step procedure in which cryogels were synthesized via the cryopolymerization of pyrrole with iron (III) chloride in the presence of supporting water-soluble polymers (poly(N-vinylpyrrolidone), poly(vinyl alcohol), gelatin, methylcellulose or hydroxypropylcellulose), followed by freeze-drying to obtain aerogels. The choice of supporting polymers was found to affect the morphology, porosity, electrical conductivity, and mechanical properties of PPy aerogels. PPy aerogels were successfully used as adsorbents to remove toxic Cr(VI) ions from aqueous solutions.

3.
Gels ; 9(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36826262

RESUMEN

Magnetic polypyrrole-gelatin-barium ferrite (PPy-G-BaFe) cryogels/aerogels were synthesized by one-step oxidative cryopolymerization of pyrrole in the presence of various fractions of barium ferrite (BaFe) nanoparticles, dispersed in aqueous gelatin solution. The successful incorporation of BaFe into the composites was confirmed by elemental analysis and scanning electron microscopy paired with an energy-dispersive X-ray detector. The maximum achieved content of BaFe in the resulting material was 3.9 wt%. The aerogels with incorporated BaFe had significantly higher specific surface area and conductivity, reaching 19.3 m2 g-1 and 4 × 10-4 S cm-1, respectively, compared to PPy-G aerogel, prepared in the absence of BaFe (7.3 m2 g-1 and 1 × 10-5 S cm-1). The model adsorption experiment using an anionic dye, Reactive Black 5, showed that magnetic PPy-G-BaFe aerogel, prepared at 10 wt% BaFe fraction, had significantly higher adsorption rate and higher adsorption capacity, compared to PPy-G (dye removal fraction 99.6% and 89.1%, respectively, after 23 h). Therefore, the prepared PPy-G-BaFe aerogels are attractive adsorbents for water purification due to their enhanced adsorption performance and the possibility of facilitated separation from solution by a magnetic field.

4.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34578038

RESUMEN

Poly(p-phenylenediamine)/montmorillonite (PPDA/MMT) composites were prepared by the oxidative polymerization of monomers intercalated within the MMT gallery, using ammonium peroxydisulfate as an oxidant. The intercalation process was evidenced by X-ray powder diffraction. The FT-IR and Raman spectroscopies revealed that, depending on the initial ratio between monomers and MMT in the polymerization mixture, the polymer or mainly oligomers are created during polymerization. The DC conductivity of composites was found to be higher than the conductivity of pristine polymer, reaching the highest value of 10-6 S cm-1 for the optimal MMT amount used during polymerization. Impedance spectroscopy was performed over wide frequency and temperature ranges to study the charge transport mechanism. The data analyzed in the framework of conductivity formalism suggest different conduction mechanisms for high and low temperature regions.

5.
Polymers (Basel) ; 13(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498749

RESUMEN

Four new bis(tpy) unimers with different linkers between the thieno[3,2-b]thiophene-2,5-diyl central unit and terpyridine-4'-yl (tpy) end-groups: no linker (Tt), ethynediyl (TtE), 1,4-phenylene (TtPh) and 2,2'-bithophene-5,5'-diyl (TtB) are prepared, characterized, and assembled with Fe2+ ions to metallo-supramolecular polymers (Fe-MSPs). The Fe-MSP films prepared by spin-casting on Indium Tin Oxide (ITO) glass are characterized by atomic force microscope (AFM) microscopy, cyclic voltammetry, and UV/vis spectroscopy and studied for their electrochromism and effect of the unimer structure on their electrochromic performance. Of the studied MSPs, Fe-Tt shows the highest optical contrast as well as coloration efficiency (CE = 641 cm2 C-1) and the fastest optical response. This makes it an excellent candidate for possible use in electrochromic devices.

6.
Chempluschem ; 85(12): 2689-2703, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33332757

RESUMEN

The singlet fission (SF) process discovered in bis(thienyl)diketopyrrolopyrroles (TDPPs) can boost their potential for photovoltaics (PV). The crystal structures of TDPP analogs carrying n-hexyl, n-butyl, or 2-(adamant-1-yl)ethyl substituents are similar, but contain increasingly slipped stacked neighbor molecules. The observed SF rate constants, kSF , (7±4), (9±3) and (5.6±1.9) ns-1 for thin films of the three compounds, respectively, are roughly equal, but the triplet quantum yields vary strongly: (120±40), (160±40) and (70±16), respectively. The recent molecular pair model reproduces the near equality of all three kSF at the crystal geometries and identifies all possible pair arrangements in which SF is predicted to be faster, by up to two orders of magnitude. However, it is also clear that the presently non-existent ability to predict the rates of processes competing with SF is pivotal for providing a guide for efforts to optimize the materials for PV.

7.
Mater Sci Eng C Mater Biol Appl ; 113: 110986, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32487402

RESUMEN

Conducting polymers (CP) can be used as pH- and/or electro-responsive components in various bioapplications, for example, in 4D smart scaffolds. The ability of CP to maintain conductivity under physiological conditions is, therefore, their crucial property. Unfortunately, the conductivity of the CP rapidly decreases in physiological environment, as their conducting salts convert to non-conducting bases. One of the promising solutions how to cope with this shortcoming is the use of alternative "doping" process that is not based on the protonation of CP with acids but on interactions relying in acidic hydrogen bonding. Therefore, the phosphonates (dimethyl phosphonate, diethyl phosphonate, dibutyl phosphonate, or diphenyl phosphonate) were used to re-dope two most common representatives of CP, polyaniline (PANI) and polypyrrole (PPy) bases. As a result, PANI doped with organic phosphonates proved to have significantly better stability of conductivity under different pH. It has also been shown that cytotoxicity of studied materials determined on embryonic stem cells and their embryotoxicity, determined as the impact on cardiomyogenesis and erythropoiesis, depend both on the polymer and phosphonate types used. With the exception of PANI doped with dibutyl phosphonate, all PPy-based phosphonates showed better biocompatibility than the phosphonates based on PANI.


Asunto(s)
Compuestos de Anilina/química , Materiales Biocompatibles/química , Organofosfonatos/química , Polímeros/química , Pirroles/química , Compuestos de Anilina/farmacología , Animales , Materiales Biocompatibles/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Ratones , Células Madre Embrionarias de Ratones , Polímeros/farmacología , Pirroles/farmacología
8.
Polymers (Basel) ; 12(4)2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32260492

RESUMEN

The paper contributes to the characterization and understanding the mutual interactions of the polar polymer gate dielectric and organic semiconductor in organic field effect transistors (OFETs). It has been shown on the example of cyanoethylated polyvinylalcohol (CEPVA), the high-k dielectric containing strong polar side groups, that the conditions during dielectric layer solidification can significantly affect the charge transport in the semiconductor layer. In contrast to the previous literature we attributed the reduced mobility to the broader distribution of the semiconductor density of states (DOS) due to a significant dipolar disorder in the dielectric layer. The combination of infrared (IR), solid-state nuclear magnetic resonance (NMR) and broadband dielectric (BDS) spectroscopy confirmed the presence of a rigid hydrogen bonds network in the CEPVA polymer. The formation of such network limits the dipolar disorder in the dielectric layer and leads to a significantly narrowed distribution of the density of states (DOS) and, hence, to the higher charge carrier mobility in the OFET active channel made of 6,13-bis(triisopropylsilylethynyl)pentacene. The low temperature drying process of CEPVA dielectric results in the decreased energy disorder of transport states in the adjacent semiconductor layer, which is then similar as in OFETs equipped with the much less polar poly(4-vinylphenol) (PVP). Breaking hydrogen bonds at temperatures around 50 °C results in the gradual disintegration of the stabilizing network and deterioration of the charge transport due to a broader distribution of DOS.

9.
J Colloid Interface Sci ; 551: 184-194, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31078100

RESUMEN

By using methyl orange template, polypyrrole nanotubes were obtained by the oxidative polymerization of pyrrole. The nanotubes were carbonized in inert atmosphere to nitrogen-enriched carbon nanotubes. These were subsequently coated with 20 wt% of polypyrrole prepared in the absence or the presence of anionic dyes (methyl orange or Acid Blue 25). The morphology of all the samples was examined by the electron microscopies, FTIR and Raman spectroscopies. Moreover, X-ray photoelectron spectroscopy and elemental analysis were used to prove the chemical structure and the successful coating process. Electron paramagnetic resonance analysis was used to calculate the spin concentrations. Significant impact of coating method is evidenced with neat polypyrrole coating providing a two-fold capacitance increase compared to uncoated nanotubes, while coating in the presence of Acid Blue 25 decreasing it slightly. With respect to oxygen reduction reaction, coatings irreversibly transformed in the first few cycles in the presence of the products of O2 reduction, presumably hydrogen peroxide, altering the oxygen reduction mechanism. This transformation allows the tailoring of the polymeric shell, over ORR active carbonaceous core, and tuning of the catalyst selectivity and optimization of materials performance for a given application - from alkaline fuel cells to hydrogen peroxide generation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...