Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 3587, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837529

RESUMEN

The robust detection of structural variants in mammalian genomes remains a challenge. It is particularly difficult in the case of genetically unstable Chinese hamster ovary (CHO) cell lines with only draft genome assemblies available. We explore the potential of the CRISPR/Cas9 system for the targeted capture of genomic loci containing integrated vectors in CHO-K1-based cell lines followed by next generation sequencing (NGS), and compare it to popular target-enrichment sequencing methods and to whole genome sequencing (WGS). Three different CRISPR/Cas9-based techniques were evaluated; all of them allow for amplification-free enrichment of target genomic regions in the range from 5 to 60 fold, and for recovery of ~15 kb-long sequences with no sequencing artifacts introduced. The utility of these protocols has been proven by the identification of transgene integration sites and flanking sequences in three CHO cell lines. The long enriched fragments helped to identify Escherichia coli genome sequences co-integrated with vectors, and were further characterized by Whole Genome Sequencing (WGS). Other advantages of CRISPR/Cas9-based methods are the ease of bioinformatics analysis, potential for multiplexing, and the production of long target templates for real-time sequencing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mamíferos/genética , Animales , Células CHO , Mapeo Cromosómico , Cricetinae , Cricetulus
2.
Biotechnol Prog ; 27(4): 1163-71, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21692195

RESUMEN

MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY™ miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT-PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44-derived CHO lines producing a recombinant human IgG. We observed that miR-221 and miR-222 were significantly downregulated in all IgG-producing cell lines when compared with parental DG44, whereas miR-125b was significantly downregulated in one IgG-producing line. In another IgG-producing line, miR-19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let-7b and miR-221 were significantly downregulated. In parental CHO K1, let-7b, miR-15b, and miR-17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering.


Asunto(s)
Inmunoglobulina G/metabolismo , MicroARNs/genética , Animales , Células CHO , Técnicas de Cultivo de Célula/métodos , Cricetinae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...